L(h,1,1)-labeling of outerplanar graphs

被引:0
|
作者
Calamoneri, Tiziana
Fusco, Emanuele G.
Tan, Richard B.
Vocca, Paola
机构
[1] Univ Roma La Sapienza, Dipartimento Informat, I-00198 Rome, Italy
[2] Univ Utrecht, Inst Comp & Informat Sci, NL-3584 CH Utrecht, Netherlands
[3] Univ Sci & Arts Oklahoma, Dept Comp Sci, Chickasha, OK 73018 USA
[4] Univ Lecce, Dipartimento Matemat Ennio de Giorgi, I-73100 Lecce, Italy
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An L(h, 1, 1)-labeling of a graph is an assignment of labels from the set of integers {0, ..., lambda} to the vertices of the graph such that adjacent vertices are assigned integers of at least distance h >= 1 apart and all vertices of distance three or less must be assigned different labels. The aim of the L(h, 1, 1)-labeling problem is to minimize A, denoted by lambda(h,1,1) and called span of the L(h, 1, 1)-labeling. As outerplanar graphs have bounded treewidth, the L(1, 1, l)-labeling problem on outerplanar graphs can be exactly solved in O(n(3)), but the multiplicative factor depends on the maximum degree A and is too big to be of practical use. In this paper we give a linear time approximation algorithm for computing the more general L (h, 1, 1)-labeling for outerplanar graphs that is within additive constants of the optimum values.
引用
收藏
页码:268 / 279
页数:12
相关论文
共 50 条
  • [1] L(h, 1, 1)-labeling of outerplanar graphs
    Calamoneri, Tiziana
    Fusco, Emanuele G.
    Tan, Richard B.
    Vocca, Paola
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (02) : 307 - 321
  • [2] L(h, 1, 1)-labeling of outerplanar graphs
    Tiziana Calamoneri
    Emanuele G. Fusco
    Richard B. Tan
    Paola Vocca
    Mathematical Methods of Operations Research, 2009, 69 : 307 - 321
  • [3] L(h,1,1)-labeling of simple graphs
    Duan, Ziming
    Lv, Pingli
    Miao, Lianying
    Miao, Zhengke
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 1, 2009, : 283 - 287
  • [4] L(h, 1)-labeling subclasses of planar graphs
    Calamoneri, T
    Petreschi, R
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2004, 64 (03) : 414 - 426
  • [5] A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs
    Hasunuma, Toru
    Ishii, Toshimasa
    Ono, Hirotaka
    Uno, Yushi
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 14 : 189 - 206
  • [6] Embedding k-outerplanar graphs into l1
    Chekuri, C
    Gupta, A
    Newman, I
    Rabinovich, Y
    Sinclair, A
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 527 - 536
  • [7] Embedding k-outerplanar graphs into l1
    Chekuri, C
    Gupta, A
    Newman, I
    Rabinovich, Y
    Sinclair, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (01) : 119 - 136
  • [8] The (2,1)-Total Labeling Number of Outerplanar Graphs Is at Most Δ+2
    Hasunuma, Toru
    Ishii, Toshimasa
    Ono, Hirotaka
    Uno, Yushi
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 103 - +
  • [9] L(2; 1; 1)-labeling of interval graphs
    Amanathulla, Sk.
    Bera, Biswajit
    Pal, Madhumangal
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):
  • [10] L(1,1)-Labeling of direct product of cycles
    Adefokun, Tayo Charles
    Ajayi, Deborah Olayide A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (01)