A discontinuous Galerkin method for stochastic Cahn-Hilliard equations

被引:6
|
作者
Li, Chen [1 ]
Qin, Ruibin [1 ,2 ]
Ming, Ju [1 ,3 ]
Wang, Zhongming [4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Guizhou, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[4] Florida Int Univ, Dept Math & Stat, MMC Campus, Miami, FL 33199 USA
关键词
Stochastic Cahn-Hilliard equation; Q-Wiener process; Local discontinuous Galerkin method; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT APPROXIMATION; ALLEN-CAHN; MODEL; DRIVEN;
D O I
10.1016/j.camwa.2017.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discontinuous Galerkin method for the stochastic Cahn-Hilliard equation with additive random noise, which preserves the conservation of mass, is investigated. Numerical analysis and error estimates are carried out for the linearized stochastic Cahn-Hilliard equation. The effects of the noises on the accuracy of our scheme are also presented. Numerical examples simulated by Monte Carlo method for both linear and nonlinear stochastic Cahn-Hilliard equations are presented to illustrate the convergence rate and validate our conclusion. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2100 / 2114
页数:15
相关论文
共 50 条
  • [1] A discontinuous Galerkin method for the Cahn-Hilliard equation
    Choo S.M.
    Lee Y.J.
    Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 113 - 126
  • [2] A discontinuous Galerkin method for the Cahn-Hilliard equation
    Wells, Garth N.
    Kuhl, Ellen
    Garikipati, Krishna
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) : 860 - 877
  • [3] Local discontinuous Galerkin methods for the Cahn-Hilliard type equations
    Xia, Yinhua
    Xu, Yan
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) : 472 - 491
  • [4] Efficient Solvers of Discontinuous Galerkin Discretization for the Cahn-Hilliard Equations
    Guo, Ruihan
    Xu, Yan
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) : 380 - 408
  • [5] A stabilized hybrid discontinuous Galerkin method for the Cahn-Hilliard equation
    Medina, Emmanuel Y. Y.
    Toledo, Elson M. M.
    Igreja, Iury
    Rocha, Bernardo M. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406
  • [6] ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION
    Chen, Gang
    Han, Daozhi
    Singler, John R.
    Zhang, Yangwen
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 83 - 109
  • [7] Numerical analysis of a hybridized discontinuous Galerkin method for the Cahn-Hilliard problem
    Kirk, Keegan L. A.
    Riviere, Beatrice
    Masri, Rami
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (05) : 2752 - 2792
  • [8] Discontinuous Galerkin finite element method applied to the coupled unsteady Stokes/Cahn-Hilliard equations
    Pigeonneau, F.
    Hachem, E.
    Saramito, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 90 (06) : 267 - 295
  • [9] Application of the Local Discontinuous Galerkin Method for the Allen-Cahn/Cahn-Hilliard System
    Xia, Yinhua
    Xu, Yan
    Shu, Chi-Wang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 821 - 835
  • [10] SPECTRAL GALERKIN METHOD FOR CAHN-HILLIARD EQUATIONS WITH TIME PERIODIC SOLUTION
    Chai, Shimin
    Zhou, Chenguang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (07): : 3046 - 3057