Geometric ergodicity of Gibbs samplers in Bayesian penalized regression models

被引:10
|
作者
Vats, Dootika [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 02期
关键词
Markov chains; geometric ergodicity; Bayesian lassos; starting values; CHAIN MONTE-CARLO; VARIABLE SELECTION; STANDARD ERRORS; GROUP LASSO; DISTRIBUTIONS; ESTIMATORS;
D O I
10.1214/17-EJS1351
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider three Bayesian penalized regression models and show that the respective deterministic scan Gibbs samplers are geometrically ergodic regardless of the dimension of the regression problem. We prove geometric ergodicity of the Gibbs samplers for the Bayesian fused lasso, the Bayesian group lasso, and the Bayesian sparse group lasso. Geometric ergodicity along with a moment condition results in the existence of a Markov chain central limit theorem for Monte Carlo averages and ensures reliable output analysis. Our results of geometric ergodicity allow us to also provide default starting values for the Gibbs samplers.
引用
收藏
页码:4033 / 4064
页数:32
相关论文
共 50 条