Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data

被引:7
|
作者
Wiederkehr, Natalia C. [1 ]
Gama, Fabio F. [1 ]
Castro, Paulo B. N. [2 ]
Bispo, Polyanna da Conceicao [3 ]
Balzter, Heiko [4 ,5 ]
Sano, Edson E. [6 ]
Liesenberg, Veraldo [7 ]
Santos, Joao R. [1 ]
Mura, Jose C. [1 ]
机构
[1] Natl Inst Space Res, Av Astronautas 1-758, BR-12227010 Sao Jose dos Campos, SP, Brazil
[2] Univ Fed Ouro Preto, Campus Univ, BR-35400000 Ouro Preto, MG, Brazil
[3] Univ Manchester, Sch Environm, Dept Geog, Oxford Rd, Manchester M13 9PL, Lancs, England
[4] Univ Leicester, Ctr Landscape & Climate Res CLCR, Bennett Bldg,Univ Rd, Leicester LE1 7RH, Leics, England
[5] Univ Leicester, Natl Ctr Earth Observat, Michael Atiyah Bldg,Univ Rd, Leicester LE1 7RH, Leics, England
[6] Embrapa Cerrados, BR-020 Planaltina, BR-73310970 Planaltina, DF, Brazil
[7] Santa Catarina State Univ, Forest Engn Dept, Ave Luiz de Camoes 2090, BR-88520000 Lages, SC, Brazil
基金
欧盟地平线“2020”; 英国自然环境研究理事会;
关键词
Brazil; Amazon; forest; land use; land cover; forest degradation; polarimetry; SAR; TROPICAL FORESTS; SAR IMAGE; L-BAND; SCATTERING MODEL; DEFORESTATION; CLASSIFICATION; DISTURBANCE; ATTRIBUTES; AREAS;
D O I
10.3390/rs12213512
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We discriminated different successional forest stages, forest degradation, and land use classes in the Tapajos National Forest (TNF), located in the Central Brazilian Amazon. We used full polarimetric images from ALOS/PALSAR-2 that have not yet been tested for land use and land cover (LULC) classification, neither for forest degradation classification in the TNF. Our specific objectives were: (1) to test the potential of ALOS/PALSAR-2 full polarimetric images to discriminate LULC classes and forest degradation; (2) to determine the optimum subset of attributes to be used in LULC classification and forest degradation studies; and (3) to evaluate the performance of Random Forest (RF) and Support Vector Machine (SVM) supervised classifications to discriminate LULC classes and forest degradation. PALSAR-2 images from 2015 and 2016 were processed to generate Radar Vegetation Index, Canopy Structure Index, Volume Scattering Index, Biomass Index, and Cloude-Pottier, van Zyl, Freeman-Durden, and Yamaguchi polarimetric decompositions. To determine the optimum subset, we used principal component analysis in order to select the best attributes to discriminate the LULC classes and forest degradation, which were classified by RF. Based on the variable importance score, we selected the four first attributes for 2015, alpha, anisotropy, volumetric scattering, and double-bounce, and for 2016, entropy, anisotropy, surface scattering, and biomass index, subsequently classified by SVM. Individual backscattering indexes and polarimetric decompositions were also considered in both RF and SVM classifiers. Yamaguchi decomposition performed by RF presented the best results, with an overall accuracy (OA) of 76.9% and 83.3%, and Kappa index of 0.70 and 0.80 for 2015 and 2016, respectively. The optimum subset classified by RF showed an OA of 75.4% and 79.9%, and Kappa index of 0.68 and 0.76 for 2015 and 2016, respectively. RF exhibited superior performance in relation to SVM in both years. Polarimetric attributes exhibited an adequate capability to discriminate forest degradation and classes of different ecological succession from the ones with less vegetation cover.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 47 条
  • [1] Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon
    Godinho Cassol, Henrique Luis
    de Brito Carreiras, Joao Manuel
    Moraes, Elisabete Caria
    Oliveira e Cruz de Aragao, Luiz Eduardo
    de Jesus Silva, Camila Valeria
    Quegan, Shaun
    Shimabukuro, Yosio Edemir
    [J]. REMOTE SENSING, 2019, 11 (01)
  • [2] POLARINIETRIC ALOS/PALSAR-2 DATA FOR RETRIEVING ABOVEGROUND BIOMASS OF SECONDARY FOREST IN THE BRAZILIAN AMAZON
    Godinho Cassol, Henrique Luis
    Aragao, Luiz E. de O. C.
    Moraes, Elisabete Caria
    de Brito Carreiras, Joao Manuel
    Shimabukuro, Yosio Edemir
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1773 - 1776
  • [3] Identification of forest cutting in managed forest of Haldwani, India using ALOS-2/PALSAR-2 SAR data
    Khati, Unmesh
    Kumar, Vineet
    Bandyopadhyay, Debmita
    Musthafa, Mohamed
    Singh, Gulab
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 213 : 503 - 512
  • [4] Study of a Simple Volume Scattering Model on Burned Forest Using Polarimetric PALSAR-2 Data
    Huang, Xiaodong
    Torbick, Nathan
    Ziniti, Beth
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (12) : 1872 - 1876
  • [5] Advancement of logging detection methodology using ALOS-2/PALSAR-2 data for forest cloud system
    Hayashi M.
    Tadono T.
    Ochiai O.
    Hamamoto K.
    Hirayama S.
    Saito H.
    Takahashi M.
    Takao G.
    Yamanobe T.
    Matsuura K.
    Fukuda K.
    Itoh T.
    [J]. Nihon Ringakkai Shi/Journal of the Japanese Forestry Society, 2021, 103 (03): : 215 - 223
  • [6] PADDY RICE FIELD EXTRACTION USING ALOS-2 PALSAR-2 FULL POLARIMETRIC DATA WITH AGRICULTURAL PARCEL VECTOR DATA
    Yonezawa, Chinatsu
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5296 - 5299
  • [7] ADVANCEMENT OF LOGGING MONITORING USING ALOS-2/PALSAR-2 FOR JAPANESE FOREST MANAGEMENT
    Hayashi, Masato
    Tadono, Takeo
    Ochiai, Osamu
    Hamamoto, Ko
    Hirayama, Sota
    Saito, Hideki
    Takahashi, Masayoshi
    Takao, Gen
    Yamanobe, Takashi
    Matsuura, Kazushi
    Fukuda, Kensuke
    Itoh, Takuya
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4443 - 4444
  • [8] Polarimetric Measures in Biomass Change Prediction Using ALOS-2 PALSAR-2 Data
    Persson, Henrik J.
    Huuva, Ivan
    [J]. REMOTE SENSING, 2024, 16 (06)
  • [9] ESTIMATION OF FOREST STEM VOLUME USING ALOS-2 PALSAR-2 SATELLITE IMAGES
    Fransson, Johan E. S.
    Santoro, Maurizio
    Wallerman, Jorgen
    Persson, Henrik J.
    Monteith, Albert R.
    Eriksson, Leif E. B.
    Nilsson, Mats
    Olsson, Hakan
    Soja, Maciej J.
    Ulander, Lars M. H.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5327 - 5330
  • [10] OPTIMAL USE OF POLARIMETRIC SIGNATURE ON PALSAR-2 DATA FOR LAND COVER CLASSIFICATION
    Phartiyal, Gopal Singh
    Kumar, Kundan
    Singh, D.
    Singh, K. P.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4558 - 4561