Non-linear Grassmannians as coadjoint orbits

被引:34
|
作者
Haller, S
Vizman, C
机构
[1] Univ Vienna, Dept Math, A-1090 Vienna, Austria
[2] W Univ Timisoara, Dept Math, R-1900 Timisoara, Romania
关键词
Manifold; Original Form; Central Extension; Extended Group; Volume Preserve;
D O I
10.1007/s00208-004-0536-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given manifold M we consider the non-linear Grassmann manifold Gr(n)(M) of n-dimensional submanifolds in M. A closed (n+2)-form on M gives rise to a closed 2-form on Gr(n)(M). If the original form was integral, the 2-form will be the curvature of a principal S-1-bundle over Gr(n)(M). Using this S-1-bundle one obtains central extensions for certain groups of diffeomorphisms of M. We can realize Gr(m-2)(M) as coadjoint orbits of the extended group of exact volume preserving diffeomorphisms and the symplectic Grassmannians SGr(2k)(M) as coadjoint orbits in the group of Hamiltonian diffeomorphisms.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [1] Non-linear Grassmannians as coadjoint orbits
    Stefan Haller
    Cornelia Vizman
    Mathematische Annalen, 2004, 329 : 771 - 785
  • [2] ON THE COMBINATORICS OF COADJOINT ORBITS
    KIRILLOV, AA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 62 - 64
  • [3] Non-linear vibrational modes in biomolecules: A periodic orbits description
    Kampanarakis, Alexandros
    Farantos, Stavros C.
    Daskalakis, Vangelis
    Varotsis, Constantinos
    CHEMICAL PHYSICS, 2012, 399 : 258 - 263
  • [5] On the symmetry orbits of black holes in non-linear sigma models
    Josef Lindman Hörnlund
    Journal of High Energy Physics, 2011
  • [6] On the symmetry orbits of black holes in non-linear sigma models
    Hornlund, Josef Lindman
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (08):
  • [7] The construction of homo- and heteroclinic orbits in non-linear systems
    Manucharyan, GV
    Mikhlin, YV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2005, 69 (01): : 39 - 48
  • [8] Cohomological splitting of coadjoint orbits
    Viña, A
    ARCHIV DER MATHEMATIK, 2004, 82 (01) : 13 - 15
  • [9] Coadjoint orbits, spin and dequantization
    Mauro, D
    PHYSICS LETTERS B, 2004, 597 (01) : 94 - 104
  • [10] SYMPLECTIC ACTIONS ON COADJOINT ORBITS
    ARATYN, H
    NISSIMOV, E
    PACHEVA, S
    ZIMERMAN, AH
    PHYSICS LETTERS B, 1990, 240 (1-2) : 127 - 132