Traveling waves and spread rates for a West Nile virus model

被引:120
|
作者
Lewis, M
Renclawowicz, J [1 ]
Van den Driessche, P
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB TG6 2G1, Canada
[2] Univ Alberta, Dept Biol Sci, Edmonton, AB TG6 2G1, Canada
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[4] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
West Nile virus model; traveling waves; spread rate; comparison theorems;
D O I
10.1007/s11538-005-9018-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A reaction-diffusion model for the spatial spread of West Nile virus is developed and analysed. Infection dynamics are based on a modified version of a model for cross infection between birds and mosquitoes (Wonham et al., 2004, An epidemiological model for West-Nile virus: Invasion analysis and control application. Proc. R. Soc. Lond. B 271), and diffusion terms describe movement of birds and mosquitoes. Working with a simplified version of the model, the cooperative nature of cross-infection dynamics is utilized to prove the existence of traveling waves and to calculate the spatial spread rate of infection. Comparison theorem results are used to show that the spread rate of the simplified model may provide an upper bound for the spread rate of a more realistic and complex version of the model.
引用
收藏
页码:3 / 23
页数:21
相关论文
共 50 条
  • [1] Traveling Waves and Spread Rates for a West Nile Virus Model
    Mark Lewis
    Joanna Rencławowicz
    P. van den Driessche
    [J]. Bulletin of Mathematical Biology, 2006, 68 : 3 - 23
  • [2] Spatial spreading of West Nile Virus described by traveling waves
    Maidana, Norberto Anibal
    Yang, Hyun Mo
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 258 (03) : 403 - 417
  • [3] West Nile virus spread
    不详
    [J]. COMPENDIUM ON CONTINUING EDUCATION FOR THE PRACTICING VETERINARIAN, 2005, 27 (07): : 494 - 494
  • [4] Two-patch model for the spread of West Nile virus
    Zhang, Juping
    Cosner, Chris
    Zhu, Huaiping
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (04) : 840 - 863
  • [5] Two-patch model for the spread of West Nile virus
    Juping Zhang
    Chris Cosner
    Huaiping Zhu
    [J]. Bulletin of Mathematical Biology, 2018, 80 : 840 - 863
  • [6] SEIR-Metapopulation model of potential spread of West Nile virus
    Bhowmick, Suman
    Gethmann, Jorn
    Conraths, Franz J.
    Sokolov, Igor M.
    Lentz, Hartmut H. K.
    [J]. ECOLOGICAL MODELLING, 2023, 476
  • [7] A MATHEMATICAL MODEL FOR THE SPREAD OF WEST NILE VIRUS IN MIGRATORY AND RESIDENT BIRDS
    Bergsman, Louis D.
    Hyman, James H.
    Manore, Carrie A.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (02) : 401 - 424
  • [8] Westward ho? The spread of West Nile virus
    Petersen, LR
    Hayes, EB
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (22): : 2257 - 2259
  • [9] Further spread of West Nile virus in Italy
    Calistri, Paolo
    Monaco, Federica
    Savini, Giovanni
    Guercio, Annalisa
    Purpari, Giuseppa
    Vicari, Domenico
    Cascio, Silvana
    Lelli, Rossella
    [J]. VETERINARIA ITALIANA, 2010, 46 (04) : 471 - 474
  • [10] West Nile Virus in the New World: Trends in the Spread and Proliferation of West Nile Virus in the Western Hemisphere
    Artsob, H.
    Gubler, D. J.
    Enria, D. A.
    Morales, M. A.
    Pupo, M.
    Bunning, M. L.
    Dudley, J. P.
    [J]. ZOONOSES AND PUBLIC HEALTH, 2009, 56 (6-7) : 357 - 369