Explicit Barenblatt profiles for fractional porous medium equations

被引:19
|
作者
Huang, Yanghong [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
ASYMPTOTIC-BEHAVIOR; DIFFUSION;
D O I
10.1112/blms/bdu045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several one-parameter families of explicit self-similar solutions are constructed for the porous medium equations (PMEs) with fractional operators. The corresponding self-similar profiles, also called Barenblatt profiles, have the same forms as those of the classic PMEs. These new exact solutions complement current theoretical analysis of the underlying equations and are expected to provide insights for further quantitative investigations.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 50 条
  • [1] Barenblatt profiles for a nonlocal porous medium equation
    Biler, Piotr
    Imbert, Cyril
    Karch, Grzegorz
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) : 641 - 645
  • [2] The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions
    Piotr Biler
    Cyril Imbert
    Grzegorz Karch
    Archive for Rational Mechanics and Analysis, 2015, 215 : 497 - 529
  • [3] The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions
    Biler, Piotr
    Imbert, Cyril
    Karch, Grzegorz
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 497 - 529
  • [4] Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type
    Luis Vazquez, Juan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (04) : 769 - 803
  • [5] FRACTIONAL POROUS MEDIUM AND MEAN FIELD EQUATIONS IN BESOV SPACES
    Zhou, Xuhuan
    Xiao, Weiliang
    Chen, Jiecheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [6] Forward and Inverse Problems for the Barenblatt–Zheltov–Kochina Type Fractional Equations
    R. R. Ashurov
    Yu. E. Fayziev
    N. Kh. Khushvaktov
    Lobachevskii Journal of Mathematics, 2023, 44 : 2567 - 2576
  • [7] Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type
    Vazquez, Juan Luis
    Volzone, Bruno
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 553 - 582
  • [8] Application of Fractional Differential Equations for Modeling Bacteria Migration in Porous Medium
    Chugunov, Vladimir
    Fomin, Sergei
    MATHEMATICS, 2024, 12 (05)
  • [9] Effective medium equations for fractional Fick's law in porous media
    Valdes-Parada, Francisco J.
    Ochoa-Tapia, J. Alberto
    Alvarez-Ramirez, Jose
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 : 339 - 353
  • [10] Finite and infinite speed of propagation for porous medium equations with fractional pressure
    Stan, Diana
    del Teso, Felix
    Luis Vazquez, Juan
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 123 - 128