Beurling's projection theorem via one-dimensional Brownian motion

被引:1
|
作者
Werner, W [1 ]
机构
[1] UNIV CAMBRIDGE,STAT LAB,DPMMS,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1017/S0305004100074557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some elementary intuitive estimates on moving boundaries hitting times by one-dimensional Brownian motion (in IR and on the circle). These results give an alternative approach to Beurling's radial projection theorem on harmonic measure in a disc. © 1996, Cambridge Philosophical Society. All rights reserved.
引用
收藏
页码:729 / 738
页数:10
相关论文
共 50 条
  • [1] ON ONE-DIMENSIONAL BROWNIAN MOTION
    GHAFFARI, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (06) : 481 - 481
  • [2] DIMENSIONAL PROPERTIES OF ONE-DIMENSIONAL BROWNIAN-MOTION
    KAUFMAN, R
    ANNALS OF PROBABILITY, 1989, 17 (01): : 189 - 193
  • [3] Span of one-dimensional multiparticle Brownian motion
    Madhavi, Sastry, G.
    Agmon, Noam
    Journal of Chemical Physics, 1996, 104 (08):
  • [4] ONSET OF BROWNIAN MOTION IN A ONE-DIMENSIONAL FLUID
    BISHOP, M
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (06): : 2850 - &
  • [5] The span of one-dimensional multiparticle Brownian motion
    Sastry, GM
    Agmon, N
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (08): : 3022 - 3025
  • [6] ANALYTICITY AND PROBABILITY PROPERTIES OF ONE-DIMENSIONAL BROWNIAN MOTION
    GHAFFARI, A
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1961, 65 (04): : 251 - 260
  • [7] Experimental System for One-Dimensional Rotational Brownian Motion
    McNaughton, Brandon H.
    Kinnunen, Paivo
    Shlomi, Miri
    Cionca, Codrin
    Pei, Shao Ning
    Clarke, Roy
    Argyrakis, Panos
    Kopelman, Raoul
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (18): : 5212 - 5218
  • [8] Regular Dirichlet extensions of one-dimensional Brownian motion
    Li, Liping
    Ying, Jiangang
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 1815 - 1849
  • [9] Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion
    Jin, Xiong
    JOURNAL OF FRACTAL GEOMETRY, 2024, 11 (1-2) : 85 - 109
  • [10] ON STRUCTURE OF REGULAR DIRICHLET SUBSPACES FOR ONE-DIMENSIONAL BROWNIAN MOTION
    Li, Liping
    Ying, Jiangang
    ANNALS OF PROBABILITY, 2017, 45 (04): : 2631 - 2654