A family of secondary fields in D-dimensional conformal quantum theory

被引:0
|
作者
Pal'chik, MY [1 ]
Fradkin, ES
机构
[1] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia
[2] PN Lebedev Phys Inst, Moscow 117924, Russia
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
下载
收藏
页码:196 / 198
页数:3
相关论文
共 50 条
  • [1] New developments in D-dimensional conformal quantum field theory
    Fradkin, ES
    Palchik, MY
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 300 (1-2): : 2 - 111
  • [2] INFINITE SYMMETRY GROUP IN D-DIMENSIONAL CONFORMAL QUANTUM-FIELD THEORY
    DERKACHOV, SE
    PISMAK, YM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06): : 1419 - 1429
  • [3] Anomalous ward identities in D-dimensional conformal theory
    Fradkin, ES
    Palchik, MY
    Zaikin, VN
    PHYSICAL REVIEW D, 1996, 53 (12): : 7345 - 7353
  • [4] Anomalous Ward identities in D-dimensional conformal theory
    Fradkin, E. S.
    Palchik, M. Y.
    Zaikin, V. N.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 53 (12):
  • [5] SOLUTION OF A CLASS OF CONFORMAL QUANTUM-FIELD THEORY MODELS IN D-DIMENSIONAL SPACE
    FRADKIN, ES
    PALCHIK, MY
    MODERN PHYSICS LETTERS A, 1989, 4 (28) : 2773 - 2790
  • [6] Conformal frames and D-dimensional gravity
    Bronnikov, KA
    Melnikov, VN
    GRAVITATIONAL CONSTANT: GENERALIZED GRAVITATIONAL THEORIES AND EXPERIMENTS, 2004, 141 : 39 - 64
  • [7] Superintegrability of d-Dimensional Conformal Blocks
    Isachenkov, Mikhail
    Schomerus, Volker
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [8] Method of solving conformal models in D-dimensional space III -: Secondary fields in D>2 and the solution of two-dimensional models
    Fradkin, ES
    Palchik, MY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (28): : 4837 - 4888
  • [9] Renormalization group and infinite algebraic structure in D-dimensional conformal field theory
    Pis'mak, Yu M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (25): : 8157 - 8171
  • [10] Semiclassical perturbation theory for two electrons in a D-dimensional quantum dot
    McKinney, BA
    Watson, DK
    PHYSICAL REVIEW B, 2000, 61 (07): : 4958 - 4962