On a System of Riemann-Liouville Fractional Boundary Value Problems with ρ-Laplacian Operators and Positive Parameters

被引:3
|
作者
Henderson, Johnny [1 ]
Luca, Rodica [2 ]
Tudorache, Alexandru [3 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Gheorghe Asachi Tech Univ, Dept Math, Iasi 700506, Romania
[3] Gheorghe Asachi Tech Univ, Dept Comp Sci & Engn, Iasi 700050, Romania
关键词
Riemann-Liouville fractional differential equations; nonlocal coupled boundary conditions; positive solutions; existence; nonexistence; positive parameters; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.3390/fractalfract6060299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and nonexistence of positive solutions of a system of Riemann-Liouville fractional differential equations with rho-Laplacian operators, supplemented with coupled nonlocal boundary conditions containing Riemann-Stieltjes integrals, fractional derivatives of various orders, and positive parameters. We apply the Schauder fixed point theorem in the proof of the existence result.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Positive solutions for a system of Riemann-Liouville fractional boundary value problems withp-Laplacian operators
    Tudorache, Alexandru
    Luca, Rodica
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [2] Positive solutions for a system of Riemann–Liouville fractional boundary value problems with p-Laplacian operators
    Alexandru Tudorache
    Rodica Luca
    Advances in Difference Equations, 2020
  • [3] Positive solutions for some Riemann-Liouville fractional boundary value problems
    Bachar, Imed
    Maagli, Habib
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (07): : 5093 - 5106
  • [4] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Tan, Jingjing
    Cheng, Caozong
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [5] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Jingjing Tan
    Caozong Cheng
    Advances in Difference Equations, 2015
  • [6] POSITIVE SOLUTIONS FOR SUPERLINEAR RIEMANN-LIOUVILLE FRACTIONAL BOUNDARY-VALUE PROBLEMS
    Bachar, Imed
    Maagli, Habib
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [7] Positive Solutions for a System of Nonlinear Semipositone Boundary Value Problems with Riemann-Liouville Fractional Derivatives
    Qiu, Xiaowei
    Xu, Jiafa
    O'Regan, Donal
    Cui, Yujun
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [8] On a singular Riemann-Liouville fractional boundary value problem with parameters
    Tudorache, Alexandru
    Luca, Rodica
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01): : 151 - 168
  • [9] Existence and Nonexistence of Positive Solutions for Coupled Riemann-Liouville Fractional Boundary Value Problems
    Henderson, Johnny
    Luca, Rodica
    Tudorache, Alexandru
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [10] Positive Solutions for a System of Riemann-Liouville Type Fractional-Order Integral Boundary Value Problems
    Zhang, Keyu
    Alshammari, Fehaid Salem
    Xu, Jiafa
    O'Regan, Donal
    FRACTAL AND FRACTIONAL, 2022, 6 (09)