Autodifferentiable Ensemble Kalman Filters

被引:17
|
作者
Chen, Yuming [1 ]
Sanz-Alonso, Daniel [1 ]
Willett, Rebecca [1 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2022年 / 4卷 / 02期
关键词
ensemble Kalman filters; autodifferentiation; data assimilation; machine learning; MONTE-CARLO IMPLEMENTATION; ERROR COVARIANCE-MATRIX; DATA ASSIMILATION; MAXIMUM-LIKELIHOOD; SEQUENTIAL STATE; ALGORITHM;
D O I
10.1137/21M1434477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Data assimilation is concerned with sequentially estimating a temporally evolving state. This task, which arises in a wide range of scientific and engineering applications, is particularly challenging when the state is high-dimensional and the state-space dynamics are unknown. This paper intro-duces a machine learning framework for learning dynamical systems in data assimilation. Our auto -differentiable ensemble Kalman filters (AD-EnKFs) blend ensemble Kalman filters for state recovery with machine learning tools for learning the dynamics. In doing so, AD-EnKFs leverage the ability of ensemble Kalman filters to scale to high-dimensional states and the power of automatic differentiation to train high-dimensional surrogate models for the dynamics. Numerical results using the Lorenz -96 model show that AD-EnKFs outperform existing methods that use expectation-maximization or particle filters to merge data assimilation and machine learning. In addition, AD-EnKFs are easy to implement and require minimal tuning.
引用
收藏
页码:801 / 833
页数:33
相关论文
共 50 条
  • [1] Reduced-order autodifferentiable ensemble Kalman filters
    Chen, Yuming
    Sanz-Alonso, Daniel
    Willett, Rebecca
    INVERSE PROBLEMS, 2023, 39 (12)
  • [2] Ensemble Kalman and H∞ Filters
    Reich, Sebastian
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 19 - 22
  • [3] Mixture ensemble Kalman filters
    Frei, Marco
    Kuensch, Hans R.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 127 - 138
  • [4] Morphing ensemble Kalman filters
    Beezley, Jonathan D.
    Mandel, Jan
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2008, 60 (01) : 131 - 140
  • [5] Ensemble clustering in deterministic ensemble Kalman filters
    Amezcua, Javier
    Ide, Kayo
    Bishop, Craig H.
    Kalnay, Eugenia
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2012, 64
  • [6] A localization technique for ensemble Kalman filters
    Bergemann, Kay
    Reich, Sebastian
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (648) : 701 - 707
  • [7] Ensemble Kalman Filters with Resampling\ast
    Al-Ghattas, Omar
    Bao, Jiajun
    Sanz-Alonso, Daniel
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (02): : 411 - 441
  • [8] Spectral diagonal ensemble Kalman filters
    Kasanicky, I.
    Mandel, J.
    Vejmelka, M.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2015, 22 (04) : 485 - 497
  • [9] Bridging the ensemble Kalman and particle filters
    Frei, M.
    Kuensch, H. R.
    BIOMETRIKA, 2013, 100 (04) : 781 - 800
  • [10] Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters
    Hoteit, Ibrahim
    Luo, Xiaodong
    Dinh-Tuan Pham
    Moroz, Irene M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1075 - +