The abstract of doctoral dissertation 'Some research on hypothesis testing and nonparametric variable screening problems for high dimensional data'

被引:0
|
作者
Chen, Yongshuai [1 ,2 ]
Cui, Hengjian [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Capital Univ Econ & Business, Sch Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
High-dimensional test; independence test; distance correlation; power enhancement; association test; U-statistic; nonparametric variable screening; additive model; INDEPENDENCE;
D O I
10.1080/24754269.2020.1829390
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this thesis, we construct test statistic for association test and independence test in high dimension, respectively, and study the corresponding theoretical properties under some regularity conditions. Meanwhile, we propose a nonparametric variable screening procedure for sparse additive model with multivariate response in untra-high dimension and established some screening properties.
引用
收藏
页码:228 / 229
页数:2
相关论文
共 24 条
  • [1] High-dimensional spectral data classification with nonparametric feature screening
    Li, Chuan-Quan
    Xu, Qing-Song
    [J]. JOURNAL OF CHEMOMETRICS, 2020, 34 (03)
  • [2] Nonparametric Additive Regression for High-Dimensional Group Testing Data
    Zuo, Xinlei
    Ding, Juan
    Zhang, Junjian
    Xiong, Wenjun
    [J]. MATHEMATICS, 2024, 12 (05)
  • [3] A robust variable screening method for high-dimensional data
    Wang, Tao
    Zheng, Lin
    Li, Zhonghua
    Liu, Haiyang
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1839 - 1855
  • [4] NONPARAMETRIC INDEPENDENCE SCREENING AND STRUCTURE IDENTIFICATION FOR ULTRA-HIGH DIMENSIONAL LONGITUDINAL DATA
    Cheng, Ming-Yen
    Honda, Toshio
    Li, Jialiang
    Peng, Heng
    [J]. ANNALS OF STATISTICS, 2014, 42 (05): : 1819 - 1849
  • [5] A robust variable screening procedure for ultra-high dimensional data
    Ghosh, Abhik
    Thoresen, Magne
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (08) : 1816 - 1832
  • [6] The Kendall interaction filter for variable interaction screening in high dimensional classification problems
    Anzarmou, Youssef
    Mkhadri, Abdallah
    Oualkacha, Karim
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (07) : 1496 - 1514
  • [7] A framework for paired-sample hypothesis testing for high-dimensional data
    Bargiotas, Ioannis
    Kalogeratos, Argyris
    Vayatis, Nicolas
    [J]. 2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 16 - 21
  • [8] Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure
    He, Yong
    Zhang, Xinsheng
    Zhang, Liwen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 132 - 150
  • [9] Nonparametric independence screening for ultra-high-dimensional longitudinal data under additive models
    Niu, Yong
    Zhang, Riquan
    Liu, Jicai
    Li, Huapeng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (04) : 884 - 905
  • [10] Grouped variable screening for ultra-high dimensional data for linear model
    Qiu, Debin
    Ahn, Jeongyoun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144