The Krasnosel'skij-Quittner Formula and Instability of a Reaction-Diffusion System with Unilateral Obstacles

被引:4
|
作者
Kim, In-Sook [1 ]
Vaeth, Martin [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Free Univ Berlin, Math Inst, D-14195 Berlin, Germany
基金
新加坡国家研究基金会;
关键词
reaction-diffusion system; Signorini condition; unilateral obstacle; instability; asymptotic stability; Krasnoselskij formula; parabolic obstacle equation; BIFURCATION POINTS;
D O I
10.4310/DPDE.2014.v11.n3.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a formula which relates the fixed point index of a parabolic obstacle equation to a fixed point index related to the right-hand side of the equation. The result is applied to a reaction-diffusion system at a constant equilibrium which is subject to Turing's diffusion-driven instability. It is shown that if a unilateral obstacle is added, the system becomes unstable in a parameter domain where the system without obstacle is stable.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 50 条
  • [1] INSTABILITY OF TURING TYPE FOR A REACTION-DIFFUSION SYSTEM WITH UNILATERAL OBSTACLES MODELED BY VARIATIONAL INEQUALITIES
    Vath, Martin
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 195 - 211
  • [2] Bifurcation for a reaction-diffusion system with unilateral obstacles with pointwise and integral conditions
    Vaeth, Martin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 817 - 836
  • [3] Transversal instability for the thermodiffusive reaction-diffusion system
    Michal Kowalczyk
    Benoît Perthame
    Nicolas Vauchelet
    Chinese Annals of Mathematics, Series B, 2015, 36 : 871 - 882
  • [4] Transversal Instability for the Thermodiffusive Reaction-Diffusion System
    Michal KOWALCZYK
    Beno?t PERTHAME
    Nicolas VAUCHELET
    Chinese Annals of Mathematics(Series B), 2015, 36 (05) : 871 - 882
  • [5] Transversal Instability for the Thermodiffusive Reaction-Diffusion System
    Kowalczyk, Michal
    Perthame, Benoit
    Vauchelet, Nicolas
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (05) : 871 - 882
  • [6] HOMOGENIZATION OF ATTRACTORS TO REACTION-DIFFUSION SYSTEM IN A MEDIUM WITH RANDOM OBSTACLES
    Bekmaganbetov, Kuanysh a.
    Chechkin, Gregory a.
    Chepyzhov, Vladimir v.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3474 - 3490
  • [7] Pattern formations and instability waves for a Reaction-Diffusion system
    Rasheed, Shaker Mahmood
    Ismael, Hajar F.
    Shah, Nehad Ali
    Eldin, Sayed M.
    Bulut, Hasan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (10):
  • [8] Secant-hyperbolic instability in a reaction-diffusion system
    Sen, Shrabani
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [9] Lateral front instability in an open reaction-diffusion system
    Horvath, D
    Kiricsi, M
    Toth, A
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1998, 94 (09): : 1217 - 1219
  • [10] Unilateral sources and sinks of an activator in reaction-diffusion systems exhibiting diffusion-driven instability
    Fencl, Martin
    Kucera, Milan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 : 71 - 92