A multidimensional Lorenz dominance relation

被引:2
|
作者
Banerjee, Asis Kumar [1 ]
机构
[1] Inst Dev Studies Kolkata, Kolkata 700064, India
关键词
INEQUALITY; INDEXES;
D O I
10.1007/s00355-013-0722-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper seeks to extend the unidimensional notion of Lorenz dominance to the multidimensional context. It formulates a definition of a multidimensional Lorenz dominance relation (MLDR) on the set of alternative distributions of well-being in an economy by incorporating a generalization of the well-known transfer principle of unidimensional theory suggested in recent literature. It also proposes two conditions which an MLDR may reasonably be required to satisfy. The paper notes that the existing literature does not seem to contain an example of an MLDR satisfying these two conditions and suggests one that does. The suggested MLDR does not seem to have appeared in the literature before.
引用
收藏
页码:171 / 191
页数:21
相关论文
共 50 条
  • [1] A multidimensional Lorenz dominance relation
    Asis Kumar Banerjee
    [J]. Social Choice and Welfare, 2014, 42 : 171 - 191
  • [2] A multidimensional Lorenz dominance relation: some corrections
    Asis Kumar Banerjee
    [J]. Social Choice and Welfare, 2014, 43 : 981 - 982
  • [3] A multidimensional Lorenz dominance relation: some corrections
    Banerjee, Asis Kumar
    [J]. SOCIAL CHOICE AND WELFARE, 2014, 43 (04) : 981 - 982
  • [4] EVOLUTION OF INFORMATION PRODUCTION PROCESSES AND ITS RELATION TO THE LORENZ DOMINANCE ORDER
    EGGHE, L
    ROUSSEAU, R
    [J]. INFORMATION PROCESSING & MANAGEMENT, 1993, 29 (04) : 499 - 513
  • [5] Exploring Lorenz Dominance
    Nagy, Reka
    Suciu, Mihai
    Dumitrescu, D.
    [J]. 14TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2012), 2012, : 254 - 259
  • [6] Almost Lorenz dominance
    Buhong Zheng
    [J]. Social Choice and Welfare, 2018, 51 : 51 - 63
  • [7] Almost Lorenz dominance
    Zheng, Buhong
    [J]. SOCIAL CHOICE AND WELFARE, 2018, 51 (01) : 51 - 63
  • [8] Segregation, informativeness and Lorenz dominance
    Lasso de la Vega, Casilda
    Volij, Oscar
    [J]. SOCIAL CHOICE AND WELFARE, 2014, 43 (03) : 547 - 564
  • [9] Testing for Generalized Lorenz dominance
    Arora S.
    Jain K.
    [J]. Statistical Methods and Applications, 2006, 15 (1): : 75 - 88
  • [10] Segregation, informativeness and Lorenz dominance
    Casilda Lasso de la Vega
    Oscar Volij
    [J]. Social Choice and Welfare, 2014, 43 : 547 - 564