One-Dimensional Convolutional Neural Networks for Android Malware Detection

被引:0
|
作者
Hasegawa, Chihiro [1 ]
Iyatomi, Hitoshi [1 ]
机构
[1] Hosei Univ, Fac Sci & Engn, Appl Informat, Tokyo, Japan
关键词
malware identification; machine learning; 1D convolutional neural network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, malware aims at Android OS has been increasing due to its rapid popularization. Several studies have been conducted for automated malware detection with machine learning approach and reported promising performance. However, they require a large amount of computation when running on the client; typically mobile phone and/or similar devices. Thus, problems remain in terms of practicality. In this paper, we propose an accurate and light-weight Android malware detection method. Our method treats very limited part of raw APK (Android application package) file of the target as a short string and analyzes it with one-dimensional convolutional neural network (1-D CNN). We used two different datasets each consisting of 5,000 malwares and 2,000 goodwares. We confirmed our method using only the last 512-1K bytes of APK file achieved 95.40-97.04% in accuracy discriminating their malignancy under the 10-fold cross-validation strategy.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 50 条
  • [1] Android Malware Detection Based on Convolutional Neural Networks
    Wang, Zhiqiang
    Li, Gefei
    Chi, Yaping
    Zhang, Jianyi
    Yang, Tao
    Liu, Qixu
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [2] Android Malware Detection using Sequential Convolutional Neural Networks
    Sun, XingPing
    Peng, JiaYuan
    Kang, HongWei
    Shen, Yong
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [3] Android Malware Detection using Convolutional Deep Neural Networks
    Bourebaa, Fatima
    Benmohammed, Mohamed
    [J]. 2020 4TH INTERNATIONAL CONFERENCE ON ADVANCED ASPECTS OF SOFTWARE ENGINEERING (ICAASE'2020): 4TH INTERNATIONAL CONFERENCE ON ADVANCED ASPECTS OF SOFTWARE ENGINEERING, 2020, : 52 - 58
  • [4] Efficient Malware Classification by Binary Sequences with One-Dimensional Convolutional Neural Networks
    Lin, Wei-Cheng
    Yeh, Yi-Ren
    [J]. MATHEMATICS, 2022, 10 (04)
  • [5] Bearing Fault Detection by One-Dimensional Convolutional Neural Networks
    Eren, Levent
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [6] Android Malware Detection Technology Based on Lightweight Convolutional Neural Networks
    Ye, Genchao
    Zhang, Jian
    Li, Huanzhou
    Tang, Zhangguo
    Lv, Tianzi
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [7] EfficientNet convolutional neural networks-based Android malware detection
    Yadav, Pooja
    Menon, Neeraj
    Ravi, Vinayakumar
    Vishvanathan, Sowmya
    Pham, Tuan D.
    [J]. COMPUTERS & SECURITY, 2020, 115
  • [8] A Novel Approach for Android Malware Detection and Classification using Convolutional Neural Networks
    Lekssays, Ahmed
    Falah, Bouchaib
    Abufardeh, Sameer
    [J]. ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 606 - 614
  • [9] TrojanDroid: Android Malware Detection for Trojan Discovery Using Convolutional Neural Networks
    Seraj, Saeed
    Pavlidis, Michalis
    Polatidis, Nikolaos
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 203 - 212
  • [10] Android Malware Detection using Convolutional Neural Networks and Data Section Images
    Jung, Jaemin
    Choi, Jongmoo
    Cho, Seong-je
    Han, Sangchul
    Park, Minkyu
    Hwang, Youngsup
    [J]. PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 149 - 153