Panel parametric, semiparametric, and nonparametric construction of counterfactuals

被引:23
|
作者
Hsiao, Cheng [1 ,2 ]
Zhou, Qiankun [3 ]
机构
[1] Univ Southern Calif, Dept Econ, Los Angeles, CA 90089 USA
[2] Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Fujian, Peoples R China
[3] Louisiana State Univ, Dept Econ, Baton Rouge, LA 70803 USA
关键词
INFERENCE; SELECTION; MODELS;
D O I
10.1002/jae.2702
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider panel parametric, semiparametric and nonparametric methods of constructing counterfactuals. We show through extensive simulations that no method is able to dominate other methods in all circumstances, since the true data-generating process is typically unknown. We therefore also suggest a model-averaging method as a robust method to generate counterfactuals. As an illustration of the sensitivity of counterfactual construction, we reexamine the impact of California's Tobacco Control Program on per capita cigarette consumption and election day registration (EDR) laws on voters' turnout by different methods.
引用
收藏
页码:463 / 481
页数:19
相关论文
共 50 条
  • [1] On some parametric, nonparametric and semiparametric discrimination rules
    Hartikainen, Antti
    Oja, Hannu
    [J]. Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, 2006, 72 : 61 - 70
  • [2] Parametric, semiparametric and nonparametric models of urban growth
    Gonzalez-Val, Rafael
    [J]. CITIES, 2023, 132
  • [3] Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings
    Sickles, RC
    [J]. JOURNAL OF ECONOMETRICS, 2005, 126 (02) : 305 - 334
  • [4] Asymptotics for nonparametric and semiparametric fixed effects panel models
    Li, Cong
    Liang, Zhongwen
    [J]. JOURNAL OF ECONOMETRICS, 2015, 185 (02) : 420 - 434
  • [5] Comparing Parametric, Nonparametric, and Semiparametric Estimators: The Weibull Trials
    Cole, Stephen R.
    Edwards, Jessie K.
    Breskin, Alexander
    Hudgens, Michael G.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (08) : 1643 - 1651
  • [6] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Hamid Sahebalam
    Mohsen Gholizadeh
    Hasan Hafezian
    Ayoub Farhadi
    [J]. Journal of Genetics, 2019, 98
  • [7] Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation
    Sahebalam, Hamid
    Gholizadeh, Mohsen
    Hafezian, Hasan
    Farhadi, Ayoub
    [J]. JOURNAL OF GENETICS, 2019, 98 (04)
  • [8] Practitioners guide on parametric, nonparametric, and semiparametric profile monitoring
    Jones, Chelsea L.
    Abdel-Salam, Abdel-Salam G.
    Mays, D'Arcy
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (03) : 857 - 881
  • [9] NONPARAMETRIC AND SEMIPARAMETRIC PANEL DATA MODELS: RECENT DEVELOPMENTS
    Rodriguez-Poo, Juan M.
    Soberon, Alexandra
    [J]. JOURNAL OF ECONOMIC SURVEYS, 2017, 31 (04) : 923 - 960
  • [10] Nonparametric and semiparametric models for missing covariates in parametric regression
    Chen, HY
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1176 - 1189