Clustering-Based Discriminant Analysis for Eye Detection

被引:13
|
作者
Chen, Shuo [1 ]
Liu, Chengjun [1 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
关键词
Discriminant analysis; k-means clustering; feature extraction; eye detection; Haar wavelets; FACE-RECOGNITION; FEATURES METHOD; PRECISE EYE; FRAMEWORK; COLOR; LDA;
D O I
10.1109/TIP.2013.2294548
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes three clustering-based discriminant analysis (CDA) models to address the problem that the Fisher linear discriminant may not be able to extract adequate features for satisfactory performance, especially for two class problems. The first CDA model, CDA-1, divides each class into a number of clusters by means of the k-means clustering technique. In this way, a new within-cluster scatter matrix S-w(c) and a new between-cluster scatter matrix S-b(c) are defined. The second and the third CDA models, CDA-2 and CDA-3, define a nonparametric form of the between-cluster scatter matrices N - S-b(c). The nonparametric nature of the between-cluster scatter matrices inherently leads to the derived features that preserve the structure important for classification. The difference between CDA-2 and CDA-3 is that the former computes the between-cluster matrix N-S-b(c) on a local basis, whereas the latter computes the between-cluster matrix N-S-b(c) on a global basis. This paper then presents an accurate CDA-based eye detection method. Experiments on three widely used face databases show the feasibility of the proposed three CDA models and the improved eye detection performance over some state-of-the-art methods.
引用
收藏
页码:1629 / 1638
页数:10
相关论文
共 50 条
  • [1] Kernel clustering-based discriminant analysis
    Ma, Bo
    Qu, Hui-yang
    Wong, Hau-san
    PATTERN RECOGNITION, 2007, 40 (01) : 324 - 327
  • [2] Representative Class Vector Clustering-based Discriminant Analysis
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    2013 NINTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2013), 2013, : 526 - 529
  • [3] Two-dimensional Clustering-based Discriminant Analysis for SAR ATR
    Hu, Li-ping
    Liu, Hong-wei
    Yin, Kui-ying
    Wu, Shun-jun
    ISAPE 2008: THE 8TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, PROCEEDINGS, VOLS 1-3, 2008, : 507 - 511
  • [4] SAR target feature extraction and recognition based on improved clustering-based discriminant analysis
    Hu, Li-Ping
    Liu, Hong-Wei
    Wu, Shun-Jun
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (09): : 2264 - 2268
  • [5] Clustering-based Two-Dimensional Linear Discriminant Analysis for Speech Recognition
    Li, Xiao-Bing
    O'Shaughnessy, Douglas
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1949 - 1952
  • [6] Clustering-Based Subgroup Detection for Automated Fairness Analysis
    Schaefer, Jero
    Wiese, Lena
    NEW TRENDS IN DATABASE AND INFORMATION SYSTEMS, ADBIS 2022, 2022, 1652 : 45 - 55
  • [7] Unsupervised Clustering-Based Analysis of the Measured Eye-Tracking Data
    Ivanova, Lenka
    Laco, Miroslav
    Benesova, Wanda
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [8] EXPLOITING SYMMETRY IN TWO-DIMENSIONAL CLUSTERING-BASED DISCRIMINANT ANALYSIS FOR FACE RECOGNITION
    Papachristou, Konstantinos
    Tefas, Anastasios
    Pitas, Ioannis
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 155 - 159
  • [9] Clustering-Based Trajectory Outlier Detection
    Eldawy, Eman O.
    Mokhtar, Hoda M. O.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (05) : 133 - 139
  • [10] Clustering-Based Outlier Detection Method
    Jiang, Sheng-yi
    An, Qing-bo
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 429 - 433