A New Dissimilarity Measure for Clustering with Application to Dermoscopic Images

被引:0
|
作者
Amelio, Lucio [1 ]
Jankovic, Radmila [2 ]
Amelio, Alessia [3 ]
机构
[1] Univ Bologna, Fac Med & Surg, Via Massarenti 9, I-40138 Bologna, Italy
[2] Serbian Acad Arts & Sci, Math Inst, Kneza Mihaila 36, Belgrade 11000, Serbia
[3] Univ Calabria, DMIES, Via Pietro Bucci 44, I-87036 Arcavacata Di Rende, Italy
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper explores the use of a new dissimilarity measure for clustering image databases with a special focus on dermoscopic images. It considers the area of the largest square sub-matrices approximately matching in the two images for computing their dissimilarity. A variant of the K-medoids approach is proposed using the new dissimilarity measure in the optimisation function. An experiment compares the proposed clustering approach with other six well-known methods in terms of F-Normalised Mutual Information, Adjusted Rand Index, Jaccard index, and purity, on a dermoscopic image database characterised by 12 skin diseases. The obtained results show that the new clustering approach is very promising in clustering dermoscopic image databases versus the other competing approaches, which is a valid support in speeding up the medical diagnosis process.
引用
收藏
页码:178 / 185
页数:8
相关论文
共 50 条
  • [1] A New Dissimilarity Measure for Clustering Seismic Signals
    Benvegna, Francesco
    D'Alessando, Antonin
    Lo Bosco, Giosue
    Luzio, Dario
    Pinello, Luca
    Tegolo, Domenico
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT II, 2011, 6979 (II): : 434 - +
  • [2] SYMBOLIC CLUSTERING USING A NEW DISSIMILARITY MEASURE
    GOWDA, KC
    DIDAY, E
    [J]. PATTERN RECOGNITION, 1991, 24 (06) : 567 - 578
  • [3] Enhanced Clustering Technique for Segmentation on Dermoscopic Images
    Kavitha, M.
    Arumugam, A. Senthil
    SaravanaKumar, V
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 956 - 961
  • [4] A dissimilarity measure for the k-Modes clustering algorithm
    Cao, Fuyuan
    Liang, Jiye
    Li, Deyu
    Bai, Liang
    Dang, Chuangyin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2012, 26 : 120 - 127
  • [5] Pairwise-adaptive dissimilarity measure for document clustering
    D'hondt, Joris
    Vertommen, Joris
    Verhaegen, Paul-Armand
    Cattrysse, Dirk
    Duflou, Joost R.
    [J]. INFORMATION SCIENCES, 2010, 180 (12) : 2341 - 2358
  • [6] Clustering and a Dissimilarity Measure for Methadone Dosage Time Series
    Lin, Chien-Ju
    Hennig, Christian
    Huang, Chieh-Liang
    [J]. ANALYSIS OF LARGE AND COMPLEX DATA, 2016, : 31 - 41
  • [7] Dynamic Dissimilarity Measure for Support-Based Clustering
    Lee, Daewon
    Lee, Jaewook
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (06) : 900 - 905
  • [8] Clustering workflow requirements using compression dissimilarity measure
    Wei, Li
    Handley, John
    Martin, Nathaniel
    Sun, Tong
    Keogh, Eamonn
    [J]. ICDM 2006: SIXTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, WORKSHOPS, 2006, : 50 - 54
  • [9] Multivalued type dissimilarity measure and concept of mutual dissimilarity value for clustering symbolic patterns
    Guru, DS
    Kiranagi, BB
    [J]. PATTERN RECOGNITION, 2005, 38 (01) : 151 - 156
  • [10] Phylogenetic trees dissimilarity measure based on strict frequent splits set and its application for clustering
    Koperwas, Jakub
    Walczak, Krzysztof
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, 2008, 5009 : 604 - 611