Submesoscale modulation of deep water formation in the Labrador Sea

被引:31
|
作者
Tagklis, Filippos [1 ]
Bracco, A. [1 ]
Ito, T. [1 ]
Castelao, R. M. [2 ]
机构
[1] Georgia Inst Technol, Earth & Atmospher Sci, Atlanta, GA 30332 USA
[2] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
NORTH-ATLANTIC SIMULATIONS; GREENLAND ICE-SHEET; PART I; OCEAN; CONVECTION; EDDIES; SURFACE; CIRCULATION; MODEL; TEMPERATURE;
D O I
10.1038/s41598-020-74345-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Submesoscale structures fill the ocean surface, and recent numerical simulations and indirect observations suggest that they may extend to the ocean interior. It remains unclear, however, how far-reaching their impact may be-in both space and time, from weather to climate scales. Here transport pathways and the ultimate fate of the Irminger Current water from the continental slope to Labrador Sea interior are investigated through regional ocean simulations. Submesoscale processes modulate this transport and in turn the stratification of the Labrador Sea interior, by controlling the characteristics of the coherent vortices formed along West Greenland. Submesoscale circulations modify and control the Labrador Sea contribution to the global meridional overturning, with a linear relationship between time-averaged near surface vorticity and/or frontogenetic tendency along the west coast of Greenland, and volume of convected water. This research puts into contest the lesser role of the Labrador Sea in the overall control of the state of the MOC argued through the analysis of recent OSNAP (Overturning in the Subpolar North Atlantic Program) data with respect to estimates from climate models. It also confirms that submesoscale turbulence scales-up to climate relevance, pointing to the urgency of including its advective contribution in Earth systems models.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Submesoscale modulation of deep water formation in the Labrador Sea
    Filippos Tagklis
    A. Bracco
    T. Ito
    R. M. Castelao
    Scientific Reports, 10
  • [2] Oxygen export to the deep ocean following Labrador Sea Water formation
    Koelling, Jannes
    Atamanchuk, Dariia
    Karstensen, Johannes
    Handmann, Patricia
    Wallace, Douglas W. R.
    BIOGEOSCIENCES, 2022, 19 (02) : 437 - 454
  • [3] Water mass transformation and formation in the Labrador sea
    Myers, Paul G.
    Donnelly, Chris
    JOURNAL OF CLIMATE, 2008, 21 (07) : 1622 - 1638
  • [4] Absence of deep-water formation in the Labrador Sea during the last interglacial period
    C. Hillaire-Marcel
    A. de Vernal
    G. Bilodeau
    A. J. Weaver
    Nature, 2001, 410 : 1073 - 1077
  • [5] Absence of deep-water formation in the Labrador Sea during the last interglacial period
    Hillaire-Marcel, C
    de Vernal, A
    Bilodeau, G
    Weaver, AJ
    NATURE, 2001, 410 (6832) : 1073 - 1077
  • [6] Detecting Labrador Sea Water formation from space
    Gelderloos, R.
    Katsman, C. A.
    Vage, K.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (04) : 2074 - 2086
  • [7] Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current
    Brandt, Peter
    Funk, Andreas
    Czeschel, Lars
    Eden, Carsten
    Boening, Claus W.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (04) : 946 - 961
  • [8] Sensitivity of biogenic carbon export to ocean climate in the Labrador Sea, a deep-water formation region
    Tian, RC
    Vezina, AF
    Deibel, D
    Rivkin, RB
    GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (04)
  • [9] DEEP CURRENTS IN LABRADOR SEA
    SWALLOW, JC
    WORTHING.LV
    DEEP-SEA RESEARCH, 1969, 16 (01): : 77 - &
  • [10] Labrador Sea Water: Pathways, CFC inventory, and formation rates
    Rhein, M
    Fischer, J
    Smethie, WM
    Smythe-Wright, D
    Weiss, RF
    Mertens, C
    Min, DH
    Fleischmann, U
    Putzka, A
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2002, 32 (02) : 648 - 665