Hamiltonian and Lagrangian for N-dimensional autonomous systems

被引:28
|
作者
Lopez, G
机构
[1] Departamento de Física, Universidad de Guadalajara, 44410 Guadalajara, Jalisco
关键词
D O I
10.1006/aphy.1996.0117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lagrangian and the Generalized Linear Momentum are expressed in terms of a Constant of Motion of an N-dimensional autonomous system. She approach allows the construction of Lagrangians and Hamiltonians which are not related by canonical transformations. (C) 1996 Academic Press, Inc.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [1] Lagrangian coherent structures in n-dimensional systems
    Lekien, Francois
    Shadden, Shawn C.
    Marsden, Jerrold E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
  • [2] Method of Generating N-dimensional Isochronous Nonsingular Hamiltonian Systems
    Devi, A. Durga
    Pradeep, R. Gladwin
    Chandrasekar, V. K.
    Lakshmanan, M.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (01) : 78 - 93
  • [3] Method of Generating N-dimensional Isochronous Nonsingular Hamiltonian Systems
    A. Durga Devi
    R. Gladwin Pradeep
    V. K. Chandrasekar
    M. Lakshmanan
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 78 - 93
  • [4] HAMILTONIAN CIRCUITS ON N-DIMENSIONAL OCTAHEDRON
    SINGMASTER, D
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (01) : 1 - 4
  • [5] Hamiltonian analysis of n-dimensional Palatini gravity with matter
    Han, MX
    Ma, YG
    Ding, Y
    Qin, L
    MODERN PHYSICS LETTERS A, 2005, 20 (10) : 725 - 731
  • [6] Infinite-dimensional Hamiltonian and Lagrangian systems with constraints
    Sobolev, AS
    MATHEMATICAL NOTES, 2002, 71 (1-2) : 136 - 140
  • [7] Infinite-Dimensional Hamiltonian and Lagrangian Systems with Constraints
    A. S. Sobolev
    Mathematical Notes, 2002, 71 : 136 - 140
  • [8] Hamiltonian structures for the n-dimensional Lotka-Volterra equations
    Plank, M.
    Journal of Physics A: Mathematical and General, 1995, 28 (07):
  • [9] HAMILTONIAN STRUCTURES FOR THE N-DIMENSIONAL LOTKA-VOLTERRA EQUATIONS
    PLANK, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (07) : 3520 - 3534
  • [10] On stabilizing N-dimensional chaotic systems
    Laval, L
    M'Sirdi, NK
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (02): : 473 - 481