High Proton Conductivity and Spectroscopic Investigations of Metal-Organic Framework Materials Impregnated by Strong Acids

被引:87
|
作者
Dybtsev, Danil N. [1 ,2 ,3 ]
Ponomareva, Valentina G. [2 ,4 ]
Aliev, Sokhrab B. [1 ]
Chupakhin, Alexei P. [2 ]
Gallyamov, Marsel R. [1 ]
Moroz, Nikolay K. [1 ]
Kolesov, Boris A. [1 ]
Kovalenko, Konstantin A. [1 ,2 ]
Shutova, Elena S. [4 ]
Fedin, Vladimir P. [1 ,2 ]
机构
[1] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Dept Nat Sci, Novosibirsk 630090, Russia
[3] Pohang Univ Sci & Technol POSTECH, Div Adv Mat Sci, Pohang 790784, South Korea
[4] Russian Acad Sci, Inst Solid State Chem & Mechanochem, Siberian Branch, Novosibirsk 630128, Russia
基金
俄罗斯基础研究基金会;
关键词
metal-organic frameworks; proton conductivity; hybrid materials; spectroscopic investigations; POLYMER ELECTROLYTE MEMBRANES; COORDINATION POLYMER; EXCHANGE MEMBRANES; LIQUID WATER; HYDROGEN; MECHANISMS; CONDUCTORS;
D O I
10.1021/am500438a
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Strong toluenesulfonic and triflic acids were incorporated into a MIL-101 chromium(III) terephthalate coordination framework, producing hybrid proton-conducting solid electrolytes. These acid@MIL hybrid materials possess stable crystalline structures that do not deteriorate during multiple measurements or prolonged heating. Particularly, the triflic-containing compound demonstrates the highest 0.08 S cm(-1) proton conductivity at 15% relative humidity and a temperature of 60 degrees C, exceeding any of today's commercial materials for proton-exchange membranes. The structure of the proton-conducting media, as well as the long-range proton-transfer mechanics, was unveiled, in a certain respect, by Fourier transform infrared and H-1 NMR spectroscopy investigations. The acidic media presumably constitutes large separated droplets, coexisting in the MIL nanocages. One component of proton transfer appears to be related to the facile relay (Grotthuss) mechanism through extensive hydrogen-bonding interactions within such droplets. The second component occurs during continuous reorganization of the droplets, thus ensuring long-range proton transfer along the porous structure of the material.
引用
收藏
页码:5161 / 5167
页数:7
相关论文
共 50 条
  • [1] Ground to conduct: mechanochemical synthesis of a metal-organic framework with high proton conductivity
    Matoga, Dariusz
    Oszajca, Marcin
    Molenda, Marcin
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (36) : 7637 - 7640
  • [2] High Proton Conductivity of a Bismuth Phosphonate Metal-Organic Framework with Unusual Topology
    Salcedo-Abraira, Pablo
    Biglione, Catalina
    Vilela, Sergio M. F.
    Grape, Erik Svensson
    Urena, Nieves
    Salles, Fabrice
    Perez-Prior, Maria Teresa
    Willhammar, Tom
    Trens, Philippe
    Varez, Alejandro
    Inge, A. Ken
    Horcajada, Patricia
    [J]. CHEMISTRY OF MATERIALS, 2023, 35 (11) : 4329 - 4337
  • [3] Defect Control To Enhance Proton Conductivity in a Metal-Organic Framework
    Taylor, Jared M.
    Dekura, Shun
    Ikeda, Ryuichi
    Kitagawa, Hiroshi
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (07) : 2286 - 2289
  • [4] Imparting High Proton Conductivity to a Metal-Organic Framework Material by Controlled Acid Impregnation
    Ponomareva, Valentina G.
    Kovalenko, Konstantin A.
    Chupakhin, Alexei P.
    Dybtsev, Danil N.
    Shutova, Elena S.
    Fedin, Vladimir P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (38) : 15640 - 15643
  • [5] The promotion of proton conductivity by immobilizing molybdovanadophosphoric acids in metal-organic frameworks
    Wang, Fuli
    Liang, Cuiyuan
    Tang, Jiyu
    Zhang, Feng
    Qu, Fengyu
    [J]. NEW JOURNAL OF CHEMISTRY, 2020, 44 (05) : 1912 - 1920
  • [6] High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal-Organic Framework via "Click" Reaction
    Zou, Xin-Nan
    Zhang, Deshan
    Xie, Yulong
    Luan, Tian-Xiang
    Li, Wanchao
    Li, Lei
    Li, Pei-Zhou
    [J]. INORGANIC CHEMISTRY, 2021, 60 (14) : 10089 - 10094
  • [7] High proton conductivity in a charge carrier-induced Ni(ii) metal-organic framework
    Chakraborty, Debabrata
    Ghorai, Arijit
    Bhanja, Piyali
    Banerjee, Susanta
    Bhaumik, Asim
    [J]. NEW JOURNAL OF CHEMISTRY, 2022, 46 (04) : 1867 - 1876
  • [8] Simultaneously anchoring free carboxyl and sulfonate groups into a metal-organic framework for high proton conductivity
    Shi, Ruimin
    Zhang, Zhengqing
    Yang, Fan
    Zhong, Chongli
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 343
  • [9] Two-step extraction for the evaluation of metal-organic framework impregnated materials
    Mukai, Mizuki
    Rani, Reetu
    Iwanaga, Nao
    Saeki, Kentaro
    Toda, Kei
    Ohira, Shin-Ichi
    [J]. ANALYTICAL SCIENCES, 2024, 40 (09) : 1793 - 1797
  • [10] Improving proton conductivity of metal organic framework materials by reducing crystallinity
    Tang, Huan
    Lv, Xueyi
    Du, Juan
    Liu, Yang
    Liu, Jie
    Guo, Lihua
    Zheng, Xiaofeng
    Hao, Hongguo
    Liu, Zhe
    [J]. APPLIED ORGANOMETALLIC CHEMISTRY, 2022, 36 (08)