On the Combinatorics of Gentle Algebras

被引:16
|
作者
Brustle, Thomas [1 ]
Douville, Guillaume [2 ]
Mousavand, Kaveh [2 ]
Thomas, Hugh [2 ]
Yildirim, Emine [2 ]
机构
[1] Univ Sherbrooke, Dept Math, 2500 Boul Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Quebec Montreal, Dept Math, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
gentle algebras; tau-tilting theory; SPLIT-SEQUENCES;
D O I
10.4153/S0008414X19000397
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For A a gentle algebra, and X and Y string modules, we construct a combinatorial basis for Hom(X, tau Y). We use this to describe support tau-tilting modules for A. We give a combinatorial realization of maps in both directions realizing the bijection between support tau-tilting modules and functorially unite torsion classes. We give an explicit basis of Ext(1)(Y, X) as short exact sequences. We analyze several constructions given in amore restricted, combinatorial setting by McConville, showing that many but not all of them can be extended to general gentle algebras.
引用
收藏
页码:1551 / 1580
页数:30
相关论文
共 50 条
  • [1] Parastatistics algebras and combinatorics
    Popov, T
    MATHEMATICAL, THEORETICAL AND PHENOMENOLOGICAL CHALLENGES BEYOND THE STANDARD MODEL: PERSPECTIVES OF THE BALKAN COLLABORATIONS, 2005, : 231 - 240
  • [2] Combinatorics and Boson normal ordering: A gentle introduction
    Blasiak, P.
    Horzela, A.
    Penson, K. A.
    Solomon, A. I.
    Duchamp, G. H. E.
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (07) : 639 - 646
  • [3] On Extensions for Gentle Algebras
    Canakci, Ilke
    Pauksztello, David
    Schroll, Sibylle
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (01): : 249 - 292
  • [4] Gentle algebras are Gorenstein
    Geiss, C
    Reiten, I
    Representations of Algebras and Related Topics, 2005, 45 : 129 - 133
  • [5] Tilted gentle algebras
    Huard, F
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (01) : 63 - 72
  • [6] Physics, combinatorics and Hopf algebras
    Chryssomalakos, C.
    REVISTA MEXICANA DE FISICA, 2007, 53 (02) : 31 - 40
  • [7] Geometric combinatorics of Kalman algebras
    N. I. Osetinskii
    O. O. Vasil’ev
    F. S. Vainstein
    Differential Equations, 2006, 42 : 1604 - 1611
  • [8] On the combinatorics of commutators of Lie algebras
    Aramaki Hitomi, Eduardo Eizo
    Yasumura, Felipe Yukihide
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (06)
  • [9] Geometric combinatorics of Kalman algebras
    Osetinskii, N. I.
    Vasil'ev, O. O.
    Vainstein, F. S.
    DIFFERENTIAL EQUATIONS, 2006, 42 (11) : 1604 - 1611
  • [10] Chronological algebras: Combinatorics and control
    Kawski M.
    Journal of Mathematical Sciences, 2001, 103 (6) : 725 - 744