Exponents of skew polynomials

被引:3
|
作者
Cherchem, Ahmed [1 ]
Leroy, Andre [2 ]
机构
[1] USTHB, Fac Mathemat, Algiers, Algeria
[2] Univ Artois, Fac Jean Perrin, Lens, France
关键词
Skew polynomial rings; Finite fields; Period of polynomials;
D O I
10.1016/j.ffa.2015.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a relative exponent for two elements in a finite ring and apply this to define and study the exponent of a polynomial in an Ore extension of the form F-q [t; theta]. This generalizes the classical notion of exponent (a.k.a. order or period) of a polynomial with coefficients in a finite field. The classical connections between the exponent of a polynomial, the order of its roots and of its companion matrix are obtained via the study of a notion of skew order of an element in a finite group. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Exponents of skew polynomials over periodic rings
    Bouzidi, A. Djamel
    Cherchem, Ahmed
    Leroy, Andre
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (04) : 1639 - 1655
  • [2] Polynomials and pure exponents
    Denis, L
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) : 445 - 451
  • [3] POLYNOMIALS WITH EXPONENTS IN A SEMIGROUP
    ERICKSON, B
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 572 - &
  • [4] The skew Schubert polynomials
    Chen, WYC
    Yan, GG
    Yang, ALB
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1181 - 1196
  • [5] On the Semirings of Skew Polynomials
    Babenko M.V.
    Chermnykh V.V.
    Journal of Mathematical Sciences, 2023, 269 (3) : 276 - 281
  • [6] Skew Schubert polynomials
    Lenart, C
    Sottile, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) : 3319 - 3328
  • [7] Estimating the characteristic exponents of polynomials
    Eremenko A.É.
    Levin G.M.
    Journal of Mathematical Sciences, 1997, 85 (5) : 2164 - 2171
  • [8] The Stembridge equality for skew stable Grothendieck polynomials and skew dual stable Grothendieck polynomials
    Abney-McPeek, Fiona
    An, Serena
    Ng, Jakin S.
    ALGEBRAIC COMBINATORICS, 2022, 5 (02): : 187 - 208
  • [9] A TABLE OF IRREDUCIBLE POLYNOMIALS AND THEIR EXPONENTS
    CHANG, JA
    GODWIN, HJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 : 513 - &
  • [10] Skew polynomials and algebraic reflexivity
    Snashall, N
    Watters, JF
    GLASGOW MATHEMATICAL JOURNAL, 2003, 45 : 7 - 9