Accurate Tensor Completion via Adaptive Low-Rank Representation

被引:15
|
作者
Zhang, Lei [1 ]
Wei, Wei [2 ,3 ,4 ]
Shi, Qinfeng [5 ,6 ]
Shen, Chunhua [5 ,6 ]
van den Hengel, Anton [5 ,6 ]
Zhang, Yanning [2 ,3 ,4 ]
机构
[1] Incept Inst Artificial Intelligence IIAI, Abu Dhabi, U Arab Emirates
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, Shaanxi Prov Key Lab Speech & Image Informat Proc, Xian 710072, Peoples R China
[5] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
[6] Australian Inst Machine Learning, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
Tensors; Adaptation models; Data models; Bayes methods; Learning systems; Computer science; Australia; Adaptive low-rank representation; automatic tensor rank determination; tensor completion; SPARSITY; FACTORIZATION;
D O I
10.1109/TNNLS.2019.2952427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-rank representation-based approaches that assume low-rank tensors and exploit their low-rank structure with appropriate prior models have underpinned much of the recent progress in tensor completion. However, real tensor data only approximately comply with the low-rank requirement in most cases, viz., the tensor consists of low-rank (e.g., principle part) as well as non-low-rank (e.g., details) structures, which limit the completion accuracy of these approaches. To address this problem, we propose an adaptive low-rank representation model for tensor completion that represents low-rank and non-low-rank structures of a latent tensor separately in a Bayesian framework. Specifically, we reformulate the CANDECOMP/PARAFAC (CP) tensor rank and develop a sparsity-induced prior for the low-rank structure that can be used to determine tensor rank automatically. Then, the non-low-rank structure is modeled using a mixture of Gaussians prior that is shown to be sufficiently flexible and powerful to inform the completion process for a variety of real tensor data. With these two priors, we develop a Bayesian minimum mean-squared error estimate framework for inference. The developed framework can capture the important distinctions between low-rank and non-low-rank structures, thereby enabling more accurate model, and ultimately, completion. For various applications, compared with the state-of-the-art methods, the proposed model yields more accurate completion results.
引用
收藏
页码:4170 / 4184
页数:15
相关论文
共 50 条
  • [1] Noisy Tensor Completion via Low-Rank Tensor Ring
    Qiu, Yuning
    Zhou, Guoxu
    Zhao, Qibin
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 1127 - 1141
  • [2] Tensor Completion via Nonlocal Low-Rank Regularization
    Xie, Ting
    Li, Shutao
    Fang, Leyuan
    Liu, Licheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2344 - 2354
  • [3] Smooth low-rank representation with a Grassmann manifold for tensor completion
    Su, Liyu
    Liu, Jing
    Zhang, Jianting
    Tian, Xiaoqing
    Zhang, Hailang
    Ma, Chaoqun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 270
  • [4] Adaptive Rank Estimation Based Tensor Factorization Algorithm for Low-Rank Tensor Completion
    Liu, Han
    Liu, Jing
    Su, Liyu
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 3444 - 3449
  • [5] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [6] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [7] Robust Low-Rank Tensor Completion Based on Tensor Ring Rank via,&epsilon
    Li, Xiao Peng
    So, Hing Cheung
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3685 - 3698
  • [8] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [9] Tensor Completion Via Collaborative Sparse and Low-Rank Transforms
    Li, Ben-Zheng
    Zhao, Xi-Le
    Wang, Jian-Li
    Chen, Yong
    Jiang, Tai-Xiang
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 1289 - 1303
  • [10] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695