orthogonal matrices;
theorems of the alternative;
transposition theorem;
analytic center;
D O I:
10.1016/S0167-6377(99)00054-1
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
Recently, Broyden [Optim. Methods Software 8 (3-4) (1998) 185-199] proved a property of orthogonal matrices from which he derived Farkas' lemma and some related results. It is shown that Broyden's result straightforwardly follows from well-known theorems of the alternative, like Motzkin's transposition theorem and 'Tucker's theorem, which are all logically equivalent to Farkas' lemma; we also answer the question of Broyden on how to efficiently compute the sign matrix of an orthogonal matrix. Finally, we raise some related questions about possible generalizations of Broyden's result. (C) 1999 Elsevier Science B.V. All rights reserved.
机构:
Sci Univ Tokyo, Fac Sci, Dept Math Appl, Shinjuku Ku, Tokyo 1620825, JapanSci Univ Tokyo, Fac Sci, Dept Math Appl, Shinjuku Ku, Tokyo 1620825, Japan
机构:
Gheorghe Asachi Tech Univ Iasi, Dept Math & Informat, B Dul Carol I,11, Iasi 700506, RomaniaGheorghe Asachi Tech Univ Iasi, Dept Math & Informat, B Dul Carol I,11, Iasi 700506, Romania
Roman, Marcel
Sandovici, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Gheorghe Asachi Tech Univ Iasi, Dept Math & Informat, B Dul Carol I,11, Iasi 700506, RomaniaGheorghe Asachi Tech Univ Iasi, Dept Math & Informat, B Dul Carol I,11, Iasi 700506, Romania