Dynamics of two-dimensional composites of elastic and viscoelastic layers

被引:2
|
作者
El-Raheb, M
机构
[1] Pasadena, CA 91107
来源
关键词
D O I
10.1121/1.1501907
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Models of frequency response, acoustic transmission, and transient wave propagation are presented for a two-dimensional composite of elastic and viscoelastic layers, simply supported at the two boundaries. The three models. adopt transfer matrices to relate state variables over the two faces of a layer. In the frequency domain, a viscoelastic constitutive law is derived by nonlinear fitting a Pade series to measured data of complex shear modulus. For an elastic material, the eigenproblem admits positive real eigenvalues and their negatives. For a viscoelastic material, it admits positive complex eigenvalues and their negative conjugates. The imaginary part of the eigenvalue acts as a velocity-dependent viscous damper. Modal analysis solving transient response utilizes the complex eigenquantities and the static-dynamic superposition method. (C) 2002 Acoustical Society of America.
引用
收藏
页码:1445 / 1455
页数:11
相关论文
共 50 条
  • [1] Elastic boundary layers in two-dimensional isotropic lattices
    Phani, A. Srikantha
    Fleck, Norman A.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (02): : 0210201 - 0210208
  • [2] Elastic boundary layers in two-dimensional isotropic lattices
    Phani, A. Srikantha
    Fleck, Norman A.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 495 - 504
  • [3] Inviscid dynamics of two-dimensional shear layers
    Chien, KY
    Ferguson, RE
    Kuhl, AL
    Glaz, HM
    Colella, P
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1995, 5 (1-2) : 59 - &
  • [4] Elastic coupling between layers in two-dimensional materials
    Gao Y.
    Kim S.
    Zhou S.
    Chiu H.-C.
    Nélias D.
    Berger C.
    De Heer W.
    Polloni L.
    Sordan R.
    Bongiorno A.
    Riedo E.
    [J]. Nature Materials, 2015, 14 (07) : 714 - 720
  • [5] On the Problem of a Thin Elastic Inclusion in a Two-Dimensional Viscoelastic Body
    Popova, Tatiana
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING (ICMM-2017), 2017, 1907
  • [6] Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
    Berti, S.
    Boffetta, G.
    [J]. PHYSICAL REVIEW E, 2010, 82 (03):
  • [7] Effective elastic properties of random two-dimensional composites
    Drygas, Piotr
    Mityushev, Vladimir
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 97-98 : 543 - 553
  • [8] Shock Dynamics in Periodic Two-Dimensional Composites
    Poole, Lauren L.
    Gonzales, Manny
    Moustafa, Abdel R.
    Gerlt, Austin R. C.
    Cordero, Zachary C.
    [J]. SHOCK COMPRESSION OF CONDENSED MATTER - 2019, 2020, 2272
  • [9] Mechanics and dynamics of two-dimensional quasicrystalline composites
    Beli, Danilo
    Rosa, Matheus Inguaggiato Nora
    De Marqui Jr, Carlos
    Ruzzene, Massimo
    [J]. EXTREME MECHANICS LETTERS, 2021, 44 (44)
  • [10] Dynamics of vertically vibrated two-dimensional granular layers
    Alexeev, A.
    Royzen, V.
    Dudko, V.
    Goldshtein, A.
    Shapiro, M.
    [J]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-3): : 3231 - 3241