Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model

被引:615
|
作者
Taguchi, A
Soma, T
Tanaka, H
Kanda, T
Nishimura, H
Yoshikawa, H
Tsukamoto, Y
Iso, H
Fujimori, Y
Stern, DM
Naritomi, H
Matsuyama, T
机构
[1] Natl Cardiovasc Ctr, Dept Cerebrovasc Dis, Suita, Osaka 5658565, Japan
[2] Osaka Minami Natl Hosp, Dept Hematol, Osaka, Japan
[3] Osaka Univ, Grad Sch Med, Dept Pharmacol, Osaka, Japan
[4] Osaka Minami Natl Hosp, Dept Gynecol, Osaka, Japan
[5] Hyogo Med Univ, Dept Internal Med, Hyogo, Japan
[6] Osaka Med Ctr Canc & Cardiovasc Dis, Dept Pathol, Osaka, Japan
[7] Hyogo Med Univ, Dept Psychol, Hyogo, Japan
[8] Hyogo Med Univ, Dept Hematol, Hyogo, Japan
[9] Med Coll Georgia, Augusta, GA 30912 USA
来源
JOURNAL OF CLINICAL INVESTIGATION | 2004年 / 114卷 / 03期
关键词
D O I
10.1172/jci200420622
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Thrombo-occlusive cerebrovascular disease resulting in stroke and permanent neuronal loss is an important cause of morbidity and mortality. Because of the unique properties of cerebral vasculature and the limited reparative capability of neuronal tissue, it has been difficult to devise effective neuroprotective therapies in cerebral ischemia. our results demonstrate that systemic administration of human cord blood-derived CD34(+) cells to immunocompromised mice subjected to stroke 48 hours earlier induces neovascularization in the ischemic zone and provides a favorable environment for neuronal regeneration. Endogenous neurogenesis, suppressed by an antiangiogenic agent, is accelerated as a result of enhanced migration of neuronal progenitor cells to the damaged area, followed by their maturation and functional recovery. Our data suggest an essential role for CD34(+) cells in promoting directly or indirectly an environment conducive to neovascularization of ischemic brain so that neuronal regeneration can proceed.
引用
收藏
页码:330 / 338
页数:9
相关论文
共 50 条
  • [1] EFFECTS OF INTRAVENOUS ADMINISTRATION OF UMBILICAL CORD BLOOD CD34+ CELLS IN A MOUSE MODEL OF NEONATAL STROKE
    Tsuji, M.
    Taguchi, A.
    Ohshima, M.
    Kasahara, Y.
    Sato, Y.
    Tsuda, H.
    Otani, K.
    Yamahara, K.
    Ihara, M.
    Harada-Shiba, M.
    Ikeda, T.
    Matsuyama, T.
    NEUROSCIENCE, 2014, 263 : 148 - 158
  • [2] Correlation of CD34+ Cells with Tissue Angiogenesis after Traumatic Brain Injury in a Rat Model
    Guo, Xinbin
    Liu, Li
    Zhang, Ming
    Bergeron, Angela
    Cui, Zhuang
    Dong, Jing-Fei
    Zhang, Jianning
    JOURNAL OF NEUROTRAUMA, 2009, 26 (08) : 1337 - 1344
  • [3] Fibronectin enhances migration of CD34+ cells
    Voermans, C
    Weimar, IS
    Von dem Borne, AEGK
    Gerritsen, WR
    Van der Schoot, CE
    BRITISH JOURNAL OF HAEMATOLOGY, 1998, 102 (01) : 163 - 163
  • [4] Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke
    Deng, Gang
    Qiu, Zhandong
    Li, Dayong
    Fang, Yu
    Zhang, Suming
    MOLECULAR MEDICINE REPORTS, 2017, 15 (06) : 3999 - 4004
  • [5] Delayed leptin administration after stroke induces neurogenesis and angiogenesis
    Avraham, Y.
    Dayan, M.
    Lassri, V.
    Vorobiev, L.
    Davidi, N.
    Chernoguz, D.
    Berry, E.
    Leker, R. R.
    JOURNAL OF NEUROSCIENCE RESEARCH, 2013, 91 (02) : 187 - 195
  • [6] Rescue of ECFCs by CD34+ cells via paracrine factors in a Mouse Model of Retinopathy of Prematurity (ROP)
    Calzi, Sergio Li
    Shaw, Lynn C.
    Shelley, William Christopher
    Qi, Xiaoping
    Quigley, Judith
    Moldovan, Leni
    Wu, Snow
    Ivan, Mircea
    Boulton, Michael E.
    Yoder, Mervin
    Grant, Maria B.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [7] Circulating CCN1 promotes angiogenesis via interaction with blood CD34+ cells
    Grote, Karsten
    Saguero, Gustavo
    Dangers, Marc
    Ballmaier, Matthias
    Schieffer, Bernhard
    CIRCULATION, 2007, 116 (16) : 48 - 49
  • [8] Down-regulation of TET2 in CD3+ and CD34+ cells of myelodysplastic syndromes and enhances CD34+ cells proliferation
    Zhang, Wei
    Shao, Zonghong
    Fu, Rong
    Wang, Huaquan
    Li, Lijuan
    Liu, Hui
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (09): : 10840 - 10846
  • [9] Human CD34+/KDR+ Cells Are Generated From Circulating CD34+ Cells After Immobilization on Activated Platelets
    de Boer, H. C.
    Hovens, M. M.
    van Oeveren-Rietdijk, A. M.
    Snoep, J. D.
    de Koning, E. J. P.
    Tamsma, J. T.
    Huisman, M. V.
    Rabelink, A. J.
    van Zonneveld, A. J.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2011, 31 (02) : 408 - U370
  • [10] Genetically modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model
    Gómez-Navarro, J
    Contreras, JL
    Arafat, W
    Jiang, XL
    Krisky, D
    Oligino, T
    Marconi, P
    Hubbard, B
    Glorioso, JC
    Curiel, DT
    Thomas, JM
    GENE THERAPY, 2000, 7 (01) : 43 - 52