Fine-Grained Assessment of Children's Text Comprehension Skills

被引:3
|
作者
den Ouden, Marije [1 ,2 ]
Keuning, Jos [1 ]
Eggen, Theo [1 ,2 ]
机构
[1] Cito, Arnhem, Netherlands
[2] Univ Twente, Fac Behav Management & Social Sci, Enschede, Netherlands
来源
FRONTIERS IN PSYCHOLOGY | 2019年 / 10卷
关键词
computer-based assessment; design principles; dynamic assessment; instructional needs; learning potential; reading process; text comprehension; READING-COMPREHENSION; DYNAMIC ASSESSMENT; INDIVIDUAL-DIFFERENCES; VOCABULARY; DIFFICULTIES; PRECURSORS; PROFILES; VALIDITY; FEEDBACK; QUALITY;
D O I
10.3389/fpsyg.2019.01313
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Text comprehension is an essential skill for achievement in personal, academic, and professional life. Therefore, it is tremendously important that children's text comprehension skills are actively monitored from an early stage. Text comprehension is, however, a complex process in which different reading abilities continuously interact with each other on the word, sentence, and text levels. In educational practice, various tests are used to measure these different reading abilities in isolation, which makes it very difficult to understand why a child scores high or low on a specific reading test and to adequately tailor reading instruction to the child's needs. Dynamic assessment has the potential to offer insights and guidance to teachers as cognitive processes that are important for learning are examined. In dynamic tests, students receive mediation through instruction when answering test questions. Although computer-based dynamic assessment in the reading domain holds potential, there is almost no support for the validity of dynamic measures of text comprehension. The aim of the present study is to determine design principles for the intended use of computer-based dynamic assessment of text comprehension. Based on the dynamic assessment literature, we developed a model for assessing the different reading abilities in conjunction. The assumption is that this model gives a fine-grained view of children's strengths and weaknesses in text comprehension and provides detailed information on children's instructional needs. The model was applied in a computer-based (fourth-grade) reading assessment and evaluated in practice through a three-group experimental design. We examined whether it is possible to (1) measure different aspects of the reading process in conjunction in order to obtain a full understanding of children's text comprehension skills, (2) measure children's learning potential in text comprehension, and (3) provide information on their instructional needs. The results show that while the model helped in explaining the children's text comprehension scores, unexpectedly, mediation did not clearly lead to progress in text comprehension. Based on the outcomes, we substantiate design principles for computer-based dynamic assessment of text comprehension.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fine-Grained Visual Text Prompting
    Yang, Lingfeng
    Li, Xiang
    Wang, Yueze
    Wang, Xinlong
    Yang, Jian
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 1594 - 1609
  • [2] Towards Fine-grained Text Sentiment Transfer
    Luo, Fuli
    Li, Peng
    Yang, Pengcheng
    Zhou, Jie
    Tan, Yutong
    Chang, Baobao
    Sui, Zhifang
    Sun, Xu
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 2013 - 2022
  • [3] Fine-Grained Crowdsourcing for Fine-Grained Recognition
    Jia Deng
    Krause, Jonathan
    Li Fei-Fei
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 580 - 587
  • [4] Fine-grained and coarse-grained contrastive learning for text classification
    Zhang, Shaokang
    Ran, Ning
    NEUROCOMPUTING, 2024, 596
  • [5] Fine-grained Pseudo Labels for Scene Text Recognition
    Li, Xiaoyu
    Chen, Xiaoxue
    Huang, Zuming
    Xie, Lele
    Chen, Jingdong
    Yang, Ming
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5786 - 5795
  • [6] Fine-Grained Language Identification in Scene Text Images
    Li, Yongrui
    Wu, Shilian
    Yu, Jun
    Wang, Zengfu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4573 - 4581
  • [7] Knowledge Mining with Scene Text for Fine-Grained Recognition
    Wang, Hao
    Liao, Junchao
    Cheng, Tianheng
    Gao, Zewen
    Liu, Hao
    Ren, Bo
    Bai, Xiang
    Liu, Wenyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4614 - 4623
  • [8] Fine-Grained Text Classification Based on Label Augmentation
    Guo, Ruiqiang
    Yang, Shilong
    Jia, Xiaowen
    Wei, Qianqiang
    Computer Engineering and Applications, 60 (21): : 134 - 141
  • [9] Simple Framework for Interpretable Fine-Grained Text Classification
    Battogtokh, Munkhtulga
    Luck, Michael
    Davidescu, Cosmin
    Borgo, Rita
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 398 - 425
  • [10] Text-Based Fine-Grained Emotion Prediction
    Singh, Gargi
    Brahma, Dhanajit
    Rai, Piyush
    Modi, Ashutosh
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (02) : 405 - 416