On Predicting the Taxi-Passenger Demand: A Real-Time Approach

被引:0
|
作者
Moreira-Matias, Luis [1 ,2 ,3 ]
Gama, Joao [2 ,4 ]
Ferreira, Michel [1 ,5 ]
Mendes-Moreira, Joao [2 ,3 ]
Damas, Luis [6 ]
机构
[1] Inst Telecomunicoes, P-4200465 Oporto, Portugal
[2] INESC TEC, LIAAD, P-4200465 Oporto, Portugal
[3] Univ Porto, Fac Engn, Dept Informat Engn, P-4200465 Porto, Portugal
[4] Univ Porto, Fac Econ, P-4200465 Porto, Portugal
[5] Univ Porto, Fac Ciencia, Dep Ciencia Computadores, P-4169007 Porto, Portugal
[6] Geolink Lda, P-4050275 Porto, Portugal
关键词
taxi-passenger demand; online learning; data streams; GPS data; auto-regressive integrated moving average (ARIMA); perceptron;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Informed driving is becoming a key feature to increase the sustainability of taxi companies. Some recent works are exploring the data broadcasted by each vehicle to provide live information for decision making. In this paper, we propose a method to employ a learning model based on historical GPS data in a real-time environment. Our goal is to predict the spatiotemporal distribution of the Taxi-Passenger demand in a short time horizon. We did so by using learning concepts originally proposed to a well-known online algorithm: the perceptron [1]. The results were promising: we accomplished a satisfactory performance to output the next prediction using a short amount of resources.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 50 条
  • [1] Predicting Taxi-Passenger Demand Using Streaming Data
    Moreira-Matias, Luis
    Gama, Joao
    Ferreira, Michel
    Mendes-Moreira, Joao
    Damas, Luis
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (03) : 1393 - 1402
  • [2] Real-Time Taxi-Passenger Prediction With L-CNN
    Niu, Kun
    Cheng, Cheng
    Chang, Jielin
    Zhang, Huiyang
    Zhou, Tong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (05) : 4122 - 4129
  • [3] Real-Time Taxi-Passenger Matching Using a Differential Evolutionary Fuzzy Controller
    Gong, Yue-Jiao
    Liu, Yi-Wen
    Lin, Ying
    Chen, Wei-Neng
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (05): : 2712 - 2725
  • [4] An approach to predict taxi-passenger demand using quantitative histogram on Uber data
    Bharathi, A.
    Prakash, S. Surya
    [J]. PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [5] A Neighborhood-Augmented LSTM Model for Taxi-Passenger Demand Prediction
    Tai Le Quy
    Nejdl, Wolfgang
    Spiliopoulou, Myra
    Ntoutsi, Eirini
    [J]. MULTIPLE-ASPECT ANALYSIS OF SEMANTIC TRAJECTORIES, 2020, 11889 : 100 - 116
  • [6] Performance Analysis and Nash Equilibria in a Taxi-Passenger System with Two Types of Passenger
    Nguyen H.Q.
    Phung-Duc T.
    [J]. SN Computer Science, 4 (1)
  • [7] New Taxi-Passenger Dispatching Model at Terminal Station
    Wang, Liwei
    Yan, Xuedong
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2019, 145 (07)
  • [8] Queueing Analysis and Nash Equilibria in an Unobservable Taxi-passenger System with Two Types of Passenger
    Nguyen, Hung Q.
    Tuan Phung-Duc
    [J]. PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH AND ENTERPRISE SYSTEMS (ICORES), 2021, : 48 - 55
  • [9] Real-time taxi demand prediction using recurrent neural network
    Ku, Donggyun
    Na, Sungyong
    Kim, Jooyoung
    Lee, Seungjae
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-MUNICIPAL ENGINEER, 2021, 174 (02) : 75 - 87
  • [10] Real-Time Taxi Demand Prediction using data from the web
    Markou, Ioulia
    Rodrigues, Filipe
    Pereira, Francisco C.
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1664 - 1671