a-Weyl's theorem and perturbations

被引:16
|
作者
Oudghiri, Mourad [1 ]
机构
[1] Univ Lille 1, UFR Math, CNRS, UMR 8524, F-59655 Villeneuve Dascq, France
关键词
a-Weyl's theorem; perturbations;
D O I
10.4064/sm173-2-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability of a-Weyl's theorem under perturbations by operators in some known classes. We establish in particular that if T is a finite a-isoloid operator, then a-Weyl's theorem is transmitted from T to T + R for every Riesz operator R commuting with T.
引用
收藏
页码:193 / 201
页数:9
相关论文
共 50 条
  • [1] a-Weyl’s theorem and hypercyclicity
    Ying Liu
    Xiaohong Cao
    Monatshefte für Mathematik, 2024, 204 : 107 - 125
  • [2] a-Weyl's theorem and hypercyclicity
    Liu, Ying
    Cao, Xiaohong
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 107 - 125
  • [3] Weyl's theorem, a-Weyl's theorem, and local spectral theory
    Curto, RE
    Han, YM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 499 - 509
  • [4] A note on a-Weyl's theorem
    Han, YM
    Djordjevic, SV
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (01) : 200 - 213
  • [5] Operators obeying a-Weyl's theorem
    Djordjevic, DS
    PUBLICATIONES MATHEMATICAE DEBRECEN, 1999, 55 (3-4): : 283 - 298
  • [6] A-Browder's theorem and generalized a-Weyl's theorem
    Cao, Xiao Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (05) : 951 - 960
  • [7] A-Browder’s Theorem and Generalized a-Weyl’s Theorem
    Xiao Hong Cao
    Acta Mathematica Sinica, English Series, 2007, 23 : 951 - 960
  • [8] GENERALIZED a-WEYL'S THEOREM FOR DIRECT SUMS
    Gupta, Anuradha
    Kashyap, Neeru
    MATEMATICKI VESNIK, 2010, 62 (04): : 265 - 270
  • [9] A-Browder's Theorem and Generalized a-Weyl's Theorem
    Xiao Hong CAO College of Mathematics and Information Science
    Acta Mathematica Sinica,English Series, 2007, (05) : 951 - 960
  • [10] New approach to a-Weyl's theorem through localized SVEP and Riesz-type perturbations
    Ben Ouidren, Kaoutar
    Zariouh, Hassan
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (17): : 3231 - 3247