A simple proof on the non-existence of shrinking breathers for the Ricci flow

被引:3
|
作者
Hsu, SY [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Math, Chiayi 62107, Taiwan
关键词
Ricci flow; monotonicity of infinitely many functional; non-existence of shrinking breathers;
D O I
10.1007/s00526-006-0023-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose M is a compact n-dimensional manifold, n >= 2, with a metric g (ij) (x, t) that evolves by the Ricci flow partial derivative(t) g (ij) = -2R (ij) in Mx (0, T). We will give a simple proof of a recent result of Perelman on the non-existence of shrinking breather without using the logarithmic Sobolev inequality.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
  • [1] A simple proof on the non-existence of shrinking breathers for the Ricci flow
    Shu-Yu Hsu
    [J]. Calculus of Variations and Partial Differential Equations, 2006, 27
  • [2] A SIMPLE PROOF OF THE SHORT-TIME EXISTENCE AND UNIQUENESS FOR RICCI FLOW
    Eftekharinasab, Kaveh
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (05): : 569 - 572
  • [3] SYNTHESIS ON THE EXISTENCE/NON-EXISTENCE OF MULTIPLE SOLUTIONS FOR AN UNSTEADY NON-ROTATING SHRINKING DISK FLOW
    A. Mehmood
    G. D. Tabassum
    M. Usman
    A. Dar
    [J]. Journal of Applied Mechanics and Technical Physics, 2022, 63 : 782 - 789
  • [4] SYNTHESIS ON THE EXISTENCE/NON-EXISTENCE OF MULTIPLE SOLUTIONS FOR AN UNSTEADY NON-ROTATING SHRINKING DISK FLOW
    Mehmood, A.
    Tabassum, G. D.
    Usman, M.
    Dar, A.
    [J]. JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2022, 63 (05) : 782 - 789
  • [5] Simple Proof of the Non-existence of Some Affine Resolvable SRGD Designs
    Kadowaki, Satoru
    Kageyama, Sanpei
    [J]. STATISTICS AND APPLICATIONS, 2020, 18 (02): : 31 - 34
  • [6] New Proofs of Perelman’s Theorem on Shrinking Breathers in Ricci Flow
    Peng Lu
    Yu Zheng
    [J]. The Journal of Geometric Analysis, 2018, 28 : 3718 - 3724
  • [7] New Proofs of Perelman's Theorem on Shrinking Breathers in Ricci Flow
    Lu, Peng
    Zheng, Yu
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (04) : 3718 - 3724
  • [8] Non-existence of *-Ricci solitons on (κ, μ)-almost cosymplectic manifolds
    Dai, Xinxin
    [J]. JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [9] UNIQUENESS AND NON-EXISTENCE OF METRICS WITH PRESCRIBED RICCI CURVATURE
    DETURCK, DM
    KOISO, N
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1984, 1 (05): : 351 - 359
  • [10] Uniqueness and non-existence of metrics with prescribed Ricci curvature
    DeTurck, Dennis M.
    Koiso, Norihito
    [J]. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1984, 1 (05): : 351 - 359