Nodal solutions for fractional Schrodinger-Poisson problems

被引:8
|
作者
Long, Wei [1 ]
Yang, Jianfu [1 ]
Yu, Weilin [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
multipeak solutions; fractional Schrodinger-Poisson system; reduction method; POSITIVE SOLUTIONS; STANDING WAVES; GROUND-STATES; EQUATION; SPHERES;
D O I
10.1007/s11425-018-9452-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following fractional Schrodinger-Poisson problem: {epsilon(2s)(-Delta)(s)u + V(x)u + phi u = vertical bar u vertical bar(p-1)u, x is an element of R-N, (-Delta)(t)phi = u(2), x is an element of R-N, where epsilon > 0 is a small parameter, N >= 3 and V(x) is a potential function. We construct non-radial sign-changing solutions, whose components may have spikes clustering at the local minimum point of V(x).
引用
收藏
页码:2267 / 2286
页数:20
相关论文
共 50 条
  • [1] LOCALIZED NODAL SOLUTIONS FOR SCHRODINGER-POISSON SYSTEMS
    Wang, Xing
    He, Rui
    Liu, Xiangqing
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1947 - 1970
  • [2] ON NODAL SOLUTIONS OF THE NONLINEAR SCHRODINGER-POISSON EQUATIONS
    Kim, Seunghyeok
    Seok, Jinmyoung
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (06)
  • [3] Nodal solutions for the Schrodinger-Poisson equations with convolution terms
    Guo, Hui
    Wu, Dan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196 (196)
  • [4] Existence and Nonexistence of Solutions for Schrodinger-Poisson Problems
    Wang, Xiaoping
    Liao, Fangfang
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [5] Multiple Solutions for a Class of Fractional Schrodinger-Poisson System
    Chen, Lizhen
    Li, Anran
    Wei, Chongqing
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [6] THE FRACTIONAL SCHRODINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS
    Jin, Tiankun
    Yang, Zhipeng
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 489 - 506
  • [7] BOUND STATE SOLUTIONS FOR FRACTIONAL SCHRODINGER-POISSON SYSTEMS
    Du, Xinsheng
    Li, Qi
    Zhao, Zengqin
    Li, Gen
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (01): : 57 - 66
  • [8] Nonexistence of least energy nodal solutions for Schrodinger-Poisson equation
    Guo, Hui
    APPLIED MATHEMATICS LETTERS, 2017, 68 : 135 - 142
  • [9] Nodal solutions for the Schrodinger-Poisson system with an asymptotically cubic term
    Guo, Hui
    Tang, Ronghua
    Wang, Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9696 - 9718
  • [10] Infinitely many radial solutions for the fractional Schrodinger-Poisson systems
    Luo, Huxiao
    Tang, Xianhua
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 3808 - 3821