Conservativeness of diffusion processes with drift

被引:2
|
作者
Kuwae, K [1 ]
机构
[1] Yokohama City Univ, Dept Math Sci, Yokohama, Kanagawa 2360027, Japan
关键词
semi-Dirichlet form; Dirichlet form; diffusion process; Kato class function; Hardy class function; Sobolev inequality; Novikov's condition; supermartingale; exponential martingale; conservativeness; Girsanov transformation;
D O I
10.1090/S0002-9939-04-07283-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the conservativeness of the Girsanov transformed diffusion process by drift b is an element of L-p(R-d --> R-d) with p greater than or equal to 4/(2- root2delta(\b\(2))/lambda) or p > 4d=(d+ 2), or p = 2 if \b\(2) is of the Hardy class with sufficiently small coefficient of energy delta(\b\(2)) < λ/2. Here λ > 0 is the lower bound of the symmetric measurable matrix-valued function a(x) := (a(i;) j (x))(i; j) appearing in the given Dirichlet form. In particular, our result improves the conservativeness of the transformed process by b is an element of L-d(R-d --> R-d) when d greater than or equal to 3.
引用
收藏
页码:2743 / 2751
页数:9
相关论文
共 50 条
  • [1] Recurrence and conservativeness of symmetric diffusion processes by Girsanov transformations
    Kuwae, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1997, 37 (04): : 735 - 756
  • [2] On diffusion processes with drift in Ld
    Krylov, N. V.
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 165 - 199
  • [3] Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms
    Takeda, Masayoshi
    Trutnau, Gerald
    FORUM MATHEMATICUM, 2012, 24 (02) : 419 - 444
  • [4] DIFFUSION PROCESSES WITH UNBOUNDED DRIFT COEFFICIENT
    PORTENKO, NI
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1975, 20 (01): : 29 - 39
  • [5] On the Conservativeness of Some Markov Processes
    Oshima, Yoichi
    Uemura, Toshihiro
    POTENTIAL ANALYSIS, 2017, 46 (04) : 609 - 645
  • [6] REMARKS ON DRIFT ESTIMATION FOR DIFFUSION PROCESSES
    Pokern, Yvo
    Stuart, Andrew M.
    Vanden-Eijnden, Eric
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 69 - 95
  • [7] On the Conservativeness of Some Markov Processes
    Yoichi Oshima
    Toshihiro Uemura
    Potential Analysis, 2017, 46 : 609 - 645
  • [8] Drift and Diffusion in Periodically Driven Renewal Processes
    T. Prager
    L. Schimansky-Geier
    Journal of Statistical Physics, 2006, 123 : 391 - 413
  • [9] Drift and diffusion in periodically driven renewal processes
    Prager, T
    Schimansky-Geier, L
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (02) : 391 - 413
  • [10] CALCULATION OF COEFFICIENTS OF DRIFT AND DIFFUSION FOR MARKOV PROCESSES
    TIKHONOV, VI
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1970, 15 (07): : 1233 - &