On the distribution of eigenvalues of grand canonical density matrices

被引:13
|
作者
Chan, GKL [1 ]
Ayers, PW
Croot, ES
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Duke Univ, Dept Chem, Durham, NC 27708 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
grand canonical ensemble; density matrix eigenvalues; partition theory; renormalization group; fluctuations;
D O I
10.1023/A:1019999930923
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using physical arguments and partition theoretic methods, we demonstrate under general conditions, that the eigenvalues w(m) of the grand canonical density matrix decay rapidly with their index m, like w(m)similar toexp[-betaB(-1)(ln m)(1+1/alpha)], where B and alpha are positive constants, O(1), which may be computed from the spectrum of the Hamiltonian. We compute values of B and alpha for several physical models, and confirm our theoretical predictions with numerical experiments. Our results have implications in a variety of questions, including the behaviour of fluctuations in ensembles, and the convergence of numerical density matrix renormalization group techniques.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条
  • [1] On the Distribution of Eigenvalues of Grand Canonical Density Matrices
    Garnet Kin-Lic Chan
    Paul W. Ayers
    Ernest S. Croot
    Journal of Statistical Physics, 2002, 109 : 289 - 299
  • [2] EIGENVALUES OF DENSITY MATRICES
    CARLSON, BC
    KELLER, JM
    PHYSICAL REVIEW, 1961, 121 (03): : 659 - &
  • [3] The Differential Entropy of the Joint Distribution of Eigenvalues of Random Density Matrices
    Luo, Laizhen
    Wang, Jiamei
    Zhang, Lin
    Zhang, Shifang
    ENTROPY, 2016, 18 (09)
  • [4] EIGENVALUES OF FERMION DENSITY MATRICES
    SASAKI, F
    PHYSICAL REVIEW, 1965, 138 (5B): : 1338 - &
  • [6] DENSITY EXPANSIONS OF DISTRIBUTION FUNCTIONS .2. DENSITY EXPANSIONS IN THE GRAND CANONICAL ENSEMBLE
    MAZUR, P
    OPPENHEIM, I
    PHYSICA, 1957, 23 (03): : 216 - 224
  • [7] Communication: Reduced density matrices in molecular systems: Grand-canonical electron states
    Bochicchio, Roberto C.
    Miranda-Quintana, Ramon A.
    Rial, Diego
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (19):
  • [8] DENSITY OF EIGENVALUES OF RANDOM BAND MATRICES
    KUS, M
    LEWENSTEIN, M
    HAAKE, F
    PHYSICAL REVIEW A, 1991, 44 (05): : 2800 - 2808
  • [9] Density of eigenvalues of random normal matrices
    Elbau, P
    Felder, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) : 433 - 450
  • [10] Duality of reduced density matrices and their eigenvalues
    Schilling, Christian
    Schilling, Rolf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (41)