Isoperimetric inequalities for finite perimeter sets under lower Ricci curvature bounds

被引:0
|
作者
Cavalletti, Fabio [1 ]
Mondino, Andrea [2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
[2] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Isopetrimetric inequality; sets of finite perimeter; Ricci curvature; optimal transport; localization technique; METRIC-MEASURE-SPACES; DIMENSION CONDITION; FINE PROPERTIES; SHARP;
D O I
10.4171/RLM/814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the results regarding the Isoperimetric inequality and Cheeger constant formulated in terms of the Minkowski content, obtained by the authors in previous papers [15, 16] in the framework of essentially non-branching metric measure spaces verifying the local curvature dimension condition, also hold in the stronger formulation in terms of the perimeter.
引用
收藏
页码:413 / 430
页数:18
相关论文
共 50 条