Deep Learning Empowered Secure RIS-Assisted Non-Terrestrial Relay Networks

被引:2
|
作者
Huang, Chong [1 ]
Chen, Gaojie [1 ]
Zhou, Yitong [1 ]
Jia, Haocheng [2 ]
Xiao, Pei [1 ]
Tafazolli, Rahim [1 ]
机构
[1] Univ Surrey, Inst Commun Syst ICS, 5GIC & 6GIC, Guildford GU2 7XH, Surrey, England
[2] Univ Leicester, Sch Engn, Leicester LE1 7RH, Leics, England
关键词
Satellite communications; RIS; full-duplex; relay selection; secrecy capacity; deep learning; INTELLIGENT REFLECTING SURFACE; TRANSMISSION; SELECTION; SYSTEMS;
D O I
10.1109/VTC2022-Fall57202.2022.10012808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a secure transmission in reconfigurable intelligent surfaces (RIS) aided non-terrestrial cooperative networks (NTCN), where the practical phase-dependent model is considered in which the RIS reflection amplitudes change with the corresponding discrete phase shifts. Moreover, we employ a full-duplex transmission scheme at the relay nodes to reduce the long-range signal loss and improve the security between the satellite and the relay node. To solve the complex non-convex optimization problem of the joint RIS reflection coefficient and relay selection optimization, we propose the deep cascade correlation learning (DCCL) algorithm to enhance optimization efficiency. Simulation results show that the proposed DCCL-based method significantly improves the secrecy capacity compared to the random relay selection and RIS coefficient methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Secure Transmission for THz-Empowered RIS-Assisted Non-Terrestrial Networks
    Yuan, Jing
    Chen, Gaojie
    Wen, Miaowen
    Tafazolli, Rahim
    Panayirci, Erdal
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 5989 - 6000
  • [2] Deep Learning Empowered Trajectory and Passive Beamforming Design in UAV-RIS Enabled Secure Cognitive Non-Terrestrial Networks
    Liu, Yun
    Huang, Chong
    Chen, Gaojie
    Song, Ruiliang
    Song, Shutian
    Xiao, Pei
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (01) : 188 - 192
  • [3] AI Empowered RIS-Assisted NOMA Networks: Deep Learning or Reinforcement Learning?
    Zhong, Ruikang
    Liu, Yuanwei
    Mu, Xidong
    Chen, Yue
    Song, Lingyang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 182 - 196
  • [4] Statistical Characterization of RIS-assisted UAV Communications in Terrestrial and Non-Terrestrial Networks Under Channel Aging
    Thanh Luan Nguyen
    Kaddoum, Georges
    Tri Nhu Do
    Haas, Zygmunt J.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 635 - 640
  • [5] Outage Performance of RIS-Assisted Cognitive Non-Terrestrial Network With NOMA
    Guo, Kefeng
    Liu, Rui
    Li, Xingwang
    Yang, Liang
    An, Kang
    Huang, Yuzhen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5953 - 5958
  • [6] Active RIS-Assisted Secure Transmission for Cognitive Satellite Terrestrial Networks
    Niu, Hehao
    Lin, Zhi
    An, Kang
    Liang, Xiaohu
    Hu, Yihua
    Li, Dong
    Zheng, Gan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 2609 - 2614
  • [7] STAR-RIS-Empowered Cognitive Non-Terrestrial Vehicle Network With NOMA
    Guo, Kefeng
    Liu, Rui
    Alazab, Mamoun
    Jhaveri, Rutvij H.
    Li, Xingwang
    Zhu, Mingfu
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (06): : 3735 - 3749
  • [8] Joint Beamforming Design for Secure RIS-Assisted IoT Networks
    Niu, Hehao
    Lin, Zhi
    Chu, Zheng
    Zhu, Zhengyu
    Xiao, Pei
    Nguyen, Huan X. X.
    Lee, Inkyu
    Al-Dhahir, Naofal
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (02) : 1628 - 1641
  • [9] Deep Reinforcement Learning for Secrecy Energy Efficiency Maximization in RIS-Assisted Networks
    Zhang, Yichi
    Lu, Yang
    Zhang, Ruichen
    Ai, Bo
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 12413 - 12418
  • [10] Joint Beamforming Design for RIS-Assisted Integrated Satellite-HAP-Terrestrial Networks Using Deep Reinforcement Learning
    Wu, Min
    Zhu, Shibing
    Li, Changqing
    Chen, Yudi
    Zhou, Feng
    SENSORS, 2023, 23 (06)