Multilevel Spectral Clustering for extreme event characterization

被引:1
|
作者
Grassi, Kelly [1 ,2 ,3 ]
Poisson Caillault, Emilie [2 ]
Lefebvre, Alain [3 ]
机构
[1] WeatherForce, F-31000 Toulouse, France
[2] ULCO LISIC, F-62228 Calais, France
[3] IFREMER, LER BL, F-62321 Boulogne Sur Mer, France
来源
基金
欧盟地平线“2020”;
关键词
Spectral clustering; multilevel systems; extreme events; time series; environmental monitoring;
D O I
10.1109/oceanse.2019.8867261
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Direct spectral clustering framework was first proposed to extract general pattern events within multivariate time series. This study investigated the way to identify extreme events, i.e. short duration and/or particular events, with no assumption about their emission date, duration and/or shape. A Multilevel Spectral Clustering (M -SC) architecture is proposed and compared with state-of-the-art clustering methods from a simulated manually labeled time series. Due to these promising empirical results, this new deep architecture is applied on marine field data.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Continual Multiview Spectral Clustering via Multilevel Knowledge
    Wang, Kangru
    Wang, Lei
    Zhang, Xiaolin
    Li, Jiamao
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1555 - 1559
  • [2] Spectral clustering properties of block multilevel Hankel matrices
    Fasino, D
    Tilli, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 306 (1-3) : 155 - 163
  • [3] Event Clustering & Event Series Characterization on Expected Frequency
    Albrecht, Conrad M.
    Freitag, Marcus
    van Kessel, Theodore G.
    Lu, Siyuan
    Hamann, Hendrik F.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 4536 - 4541
  • [4] Video Event Classification and Anomaly Identification using Spectral Clustering
    Fernando, W. S. K.
    Perera, P. H.
    Herath, H. M. S. P. B.
    Ekanayake, M. P. B.
    Godaliyadda, G. M. R. I.
    Wijayakulasooriya, J. V.
    [J]. 2015 FIFTEENTH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2015, : 21 - 24
  • [5] Plasma characterization in the extreme ultraviolet spectral range
    Kranzusch, S
    Mann, KR
    Peth, C
    [J]. ADVANCES IN LABORATORY-BASED X-RAY SOURCES AND OPTICS III, 2002, 4781 : 1 - 9
  • [6] On the use of spectral clustering for prostate tissue characterization
    Mohamed, S. S.
    Youssef, A. M.
    El-Saadany, E. F.
    Salama, M. M. A.
    [J]. 2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 1160 - +
  • [7] Plasma generation and characterization in the extreme ultraviolet spectral range
    Kranzusch, S
    Peth, C
    Doering, S
    Mann, K
    [J]. LASER-GENERATED AND OTHER LABORATORY X-RAY AND EUV SOURCES, OPTICS, AND APPLICATIONS, 2003, 5196 : 71 - 85
  • [8] Extreme clustering - A clustering method via density extreme points
    Wang, Shuliang
    Li, Qi
    Zhao, Chuanfeng
    Zhu, Xingquan
    Yuan, Hanning
    Dai, Tianru
    [J]. INFORMATION SCIENCES, 2021, 542 : 24 - 39
  • [9] Multilevel clustering of extremes
    Novak, SY
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 97 (01) : 59 - 75
  • [10] Unsupervised Clustering on PMU Data for Event Characterization on Smart Grid
    Klinginsmith, Eric
    Barella, Richard
    Zhao, Xinghui
    Wallace, Scott
    [J]. PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON SMART CITIES AND GREEN ICT SYSTEMS (SMARTGREENS 2016), 2016, : 233 - 240