Characterizations of evenly convex sets and evenly quasiconvex functions

被引:32
|
作者
Daniilidis, A
Martinez-Legaz, JE [1 ]
机构
[1] Univ Autonoma Barcelona, CODE, Bellaterra 08193, Spain
[2] Univ Autonoma Barcelona, Dept Econ & Hist Econ, Bellaterra 08193, Spain
[3] INRIA, F-38334 St Ismier, France
关键词
D O I
10.1016/S0022-247X(02)00206-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present a geometric characterization of even convexity in separable Banach spaces, which is not expressed in terms of dual functionals or separation theorems. As an application, an analytic equivalent definition for the class of evenly quasiconvex functions is derived. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [1] EVENLY CONVEX SETS, AND EVENLY QUASICONVEX FUNCTIONS, REVISITED
    Goberna, Miguel A.
    Rodriguez, Margarita M. L.
    Vicente-Perez, Jose
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (02): : 189 - 206
  • [2] Conditionally evenly convex sets and evenly quasi-convex maps
    Frittelli, Marco
    Maggis, Marco
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (01) : 169 - 184
  • [3] On Evenly Convex Functions
    Rodriguez, Margarita M. L.
    Vicente-Perez, Jose
    JOURNAL OF CONVEX ANALYSIS, 2011, 18 (03) : 721 - 736
  • [4] Evenly convex credal sets
    Cozman, Fabio Gagliardi
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 103 : 124 - 138
  • [5] Evenly convex credal sets
    1600, Elsevier Inc. (103):
  • [6] Characterization of R-evenly quasiconvex functions
    Martinez-Legaz, JE
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (03) : 717 - 722
  • [7] Characterization of R-Evenly Quasiconvex Functions
    J. E. Martínez-Legaz
    Journal of Optimization Theory and Applications, 1997, 95 : 717 - 722
  • [8] Basic properties of evenly convex sets
    Klee, Victor
    Maluta, Elisabetta
    Zanco, Clemente
    JOURNAL OF CONVEX ANALYSIS, 2007, 14 (01) : 137 - 148
  • [9] Duality for Closed Convex Functions and Evenly Convex Functions
    M. Volle
    J. E. Martínez-Legaz
    J. Vicente-Pérez
    Journal of Optimization Theory and Applications, 2015, 167 : 985 - 997
  • [10] Duality for Closed Convex Functions and Evenly Convex Functions
    Volle, M.
    Martinez-Legaz, J. E.
    Vicente-Perez, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) : 985 - 997