Effect of PET-MR Inconsistency in the Kernel Image Reconstruction Method

被引:0
|
作者
Deidda, Daniel [1 ,2 ,3 ]
Karakatsanis, N. A. [4 ,5 ]
Robson, Philip M. [4 ]
Efthimiou, Nikos [6 ]
Fayad, Zahi A. [4 ]
Aykroyd, Robert G. [2 ]
Tsoumpas, Charalampos [4 ,7 ,8 ]
机构
[1] Univ Leeds, Sch Med, Leeds Inst Cardiovasc & Metab Med, Biomed Imaging Sci Dept, Leeds LS2 9NL, W Yorkshire, England
[2] Univ Leeds, Sch Math, Dept Stat, Leeds LS2 9NL, W Yorkshire, England
[3] Natl Phys Lab, Med Radiat Phys Dept, Teddington, Middx, England
[4] Icahn Sch Med Mt Sinai, Dept Radiol, Translat & Mol Imaging Inst, New York, NY 10029 USA
[5] Cornell Univ, Weill Cornell Med Coll, Dept Radiol, Div Radiopharmaceut Sci, New York, NY 10021 USA
[6] Univ Hull, Fac Hlth Sci, Sch Life Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
[7] Univ Leeds, Sch Med, Biomed Imaging Sci Dept, Leeds LS2 9NL, W Yorkshire, England
[8] Invicro Ltd, Dept Res & Dev, London W12 0NN, England
基金
英国工程与自然科学研究理事会;
关键词
Anatomically driven; expectation maximization; hybrid kernel; image prior; iterative reconstruction; kernel method; positron emission tomography (PET); EMISSION-TOMOGRAPHY; INFORMATION;
D O I
10.1109/TRPMS.2018.2884176
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Anatomically driven image reconstruction algorithms have become very popular in positron emission tomography (PET) where they have demonstrated improved image resolution and quantification. This paper examines the effects of spatial inconsistency between MR and PET images in hot and cold regions of PET images using the hybrid kernelized expectation maximization (HKEM) machine learning method. Our evaluation was conducted on Jaszczak phantom and patient data acquired with the Biograph Siemens mMR. The results show that even a small shift can cause a significant change in activity concentration. In general, the PET-MR inconsistencies can induce the partial volume effect, more specifically the "spill-in" for cold regions and the "spill-out" for hot regions. The maximum change was about 100% for the cold region and 10% for the hot lesion using kernelized expectation maximization, against the 37% and 8% obtained with HKEM. The findings of this paper suggest that including PET information in the kernel enhances the robustness of the reconstruction in case of spatial inconsistency. Nevertheless, accurate registration and choice of the appropriate MR image for the creation of the kernel is essential to avoid artifacts, blurring, and bias.
引用
收藏
页码:400 / 409
页数:10
相关论文
共 50 条
  • [1] Single-Modality Supervised Joint PET-MR Image Reconstruction
    Corda-D'Incan, Guillaume
    Schnabel, Julia A.
    Hammers, Alexander
    Reader, Andrew J.
    [J]. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (07) : 742 - 754
  • [2] A Deep Kernel Method for PET Image Reconstruction
    Li, Siqi
    Wang, Guobao
    [J]. MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [3] PET Image Reconstruction Using Kernel Method
    Wang, Guobao
    Qi, Jinyi
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (01) : 61 - 71
  • [4] PET IMAGE RECONSTRUCTION USING KERNEL METHOD
    Wang, Guobao
    Qi, Jinyi
    [J]. 2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1162 - 1165
  • [5] The application of PET-MR image registration in the brain
    Myers, R
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2002, 75 : S31 - S35
  • [6] MR-Guided Dynamic PET Image Reconstruction with the Kernel Method and Spectral Basis Functions
    Novosad, Philip
    Reader, Andrew J.
    [J]. 2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [7] Multiplexing Kernelized Expectation Maximization Reconstruction for PET-MR
    Deidda, Daniel
    Aykroyd, Robert G.
    Tsoumpas, Charalampos
    [J]. 2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC), 2018,
  • [8] PET-MR Joint Reconstruction with Information Theoretic Priors
    Yu, Yunhan
    Yao, Shulin
    Shi, Wang
    Liu, Yaqiang
    Ma, Tianyu
    [J]. 2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [9] ML and MAP PET reconstruction with MR-voxel sizes for simultaneous PET-MR
    Belzunce, Martin A.
    Mehranian, Abolfazl
    Bland, James
    Reader, Andrew J.
    [J]. 2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [10] PET image reconstruction using physical and mathematical modelling for time of flight PET-MR scanners in the STIR library
    Wadhwa, Palak
    Thielemans, Kris
    Efthimiou, Nikos
    Wangerin, Kristen
    Keat, Nicholas
    Emond, Elise
    Deller, Timothy
    Bertolli, Ottavia
    Deidda, Daniel
    Delso, Gaspar
    Tohme, Michel
    Jansen, Floris
    Gunn, Roger N.
    Hallett, William
    Tsoumpas, Charalampos
    [J]. METHODS, 2021, 185 : 110 - 119