Deep Learning-designed Diffractive Neural Networks

被引:0
|
作者
Lin, Xing [1 ,2 ,3 ]
Riverson, Yair [1 ,2 ,3 ]
Yardimci, Nezih T. [1 ,3 ]
Veli, Muhammed [1 ,2 ,3 ]
Luo, Yi [1 ,2 ,3 ]
Jarrahi, Mona [1 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report deep learning-based design of diffractive neural networks. Following its fabrication, a diffractive neural network can all-optically perform user-defined tasks through diffraction. We demonstrate the applications of this framework for classification and imaging tasks. (C) 2019 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Class-specific diffractive cameras based on deep learning-designed surfaces
    Zhou, Xuxi
    Wang, Shuming
    LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [2] Class-specific diffractive cameras based on deep learning-designed surfaces
    Xuxi Zhou
    Shuming Wang
    Light: Science & Applications, 11
  • [3] Unidirectional imaging using deep learning-designed materials
    Li, Jingxi
    Gan, Tianyi
    Zhao, Yifan
    Bai, Bijie
    Shen, Che-Yung
    Sun, Songyu
    Jarrahi, Mona
    Ozcan, Aydogan
    SCIENCE ADVANCES, 2023, 9 (17)
  • [4] Deep reinforcement learning-designed radiofrequency waveform in MRI
    Shin, Dongmyung
    Kim, Younghoon
    Oh, Chungseok
    An, Hongjun
    Park, Juhyung
    Kim, Jiye
    Lee, Jongho
    NATURE MACHINE INTELLIGENCE, 2021, 3 (11) : 985 - 994
  • [5] Deep reinforcement learning-designed radiofrequency waveform in MRI
    Dongmyung Shin
    Younghoon Kim
    Chungseok Oh
    Hongjun An
    Juhyung Park
    Jiye Kim
    Jongho Lee
    Nature Machine Intelligence, 2021, 3 : 985 - 994
  • [6] Universal Polarization Transformations: Spatial Programming of Polarization Scattering Matrices Using a Deep Learning-Designed Diffractive Polarization Transformer
    Li, Yuhang
    Li, Jingxi
    Zhao, Yifan
    Gan, Tianyi
    Hu, Jingtian
    Jarrahi, Mona
    Ozcan, Aydogan
    ADVANCED MATERIALS, 2023, 35 (51)
  • [7] THz diffractive optics designed with neural networks
    Komorowski, Pawel
    Siemion, Agnieszka
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [8] Recurrent diffractive deep neural networks
    Zhou, Junhe
    Wang, Qiqi
    Huang, Chenweng
    OPTICS EXPRESS, 2024, 32 (27): : 48093 - 48104
  • [9] Spatiotemporal diffractive deep neural networks
    Zhou, Junhe
    Pu, Haoqian
    Yan, Jiaxin
    OPTICS EXPRESS, 2024, 32 (02) : 1864 - 1877
  • [10] Review of diffractive deep neural networks
    Sun, Yichen
    Dong, Mingli
    Yu, Mingxin
    Liu, Xiaolin
    Zhu, Lianqing
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (11) : 2951 - 2961