Near-Real Time Crop Progress Estimation using Remote Sensing in Regions without Ground Survey Data

被引:1
|
作者
Worrall, George R. [1 ]
Judge, Jasmeet [1 ]
机构
[1] Univ Florida, Dept Agr & Biol Engn, Ctr Remote Sensing, Gainesville, FL 32611 USA
关键词
crop progress; crop phenology; long short-term memory; data availability; pre-training;
D O I
10.1109/IGARSS46834.2022.9883595
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study a method for near-real time (nRT) crop progress estimation (CPE) for data-poor regions - those without large scale crop surveys - is proposed. The method utilizes Long Short-Term Memory and is pre-trained on USDA corn crop progress data for the US Midwest using weather and MODIS-derived vegetation index products. Performance of the method is evaluated in different growing zones of Argentina, a major corn exporter, using Bolsa de Cereales corn crop progress data. To establish how the proposed nRT CPE method would perform in regions any ground survey data, evaluation is conducted without prior access to or fine-tuning on Argentinian ground truth crop progress. Initial results from a single growing zone in Argentina indicate that pre-training an LSTM-based nRT CPE method using data from regions with high ground truth data availability may translate to effective nRT CPE in regions where ground survey data are unavailable.
引用
收藏
页码:5456 / 5459
页数:4
相关论文
共 50 条
  • [1] Near Real Time Crop Loss Estimation using Remote Sensing Observations
    Sawant, Suryakant
    Mohite, Jayantrao
    Sakkan, Mariappan
    Pappula, Srinivasu
    [J]. 2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [2] Identification of the IMF sector structure in near-real time by ground magnetic data
    Janzhura, A. S.
    Troshichev, O. A.
    [J]. ANNALES GEOPHYSICAE, 2011, 29 (08) : 1491 - 1500
  • [3] Prediction of Solar Power Using Near-Real Time Satellite Data
    Prasad, Abhnil Amtesh
    Kay, Merlinde
    [J]. ENERGIES, 2021, 14 (18)
  • [4] Progress of Geological Survey Using Airborne Hyperspectral Remote Sensing Data in the Gansu and Qinghai Regions
    ZHAO Yingjun
    QIN Kai
    SUN Yu
    LIU Dechang
    TIAN Feng
    PEI Chengkai
    YANG Yanjie
    YANG Guofang
    ZHOU Jiajing
    [J]. Acta Geologica Sinica(English Edition), 2015, (05) : 1783 - 1784
  • [5] Progress of Geological Survey Using Airborne Hyperspectral Remote Sensing Data in the Gansu and Qinghai Regions
    Zhao Yingjun
    Qin Kai
    Sun Yu
    Liu Dechang
    Tian Feng
    Pei Chengkai
    Yang Yanjie
    Yang Guofang
    Zhou Jiajing
    [J]. ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2015, 89 (05) : 1783 - 1784
  • [6] Progress of Geological Survey Using Airborne Hyperspectral Remote Sensing Data in the Gansu and Qinghai Regions
    ZHAO Yingjun
    QIN Kai
    SUN Yu
    LIU Dechang
    TIAN Feng
    PEI Chengkai
    YANG Yanjie
    YANG Guofang
    ZHOU Jiajing
    [J]. ActaGeologicaSinica(EnglishEdition), 2015, 89 (05) : 1783 - 1784
  • [7] Real Time Estimation of the Calgary Floods Using Limited Remote Sensing Data
    Schnebele, Emily
    Cervone, Guido
    Kumar, Shamanth
    Waters, Nigel
    [J]. WATER, 2014, 6 (02) : 381 - 398
  • [8] Characterization of soluble iron in urban aerosols using near-real time data
    Oakes, Michelle
    Rastogi, Neeraj
    Majestic, Brian J.
    Shafer, Martin
    Schauer, James J.
    Edgerton, Eric S.
    Weber, Rodney J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [9] Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities
    Gao, Feng
    Zhang, Xiaoyang
    [J]. JOURNAL OF REMOTE SENSING, 2021, 2021
  • [10] NEAR REAL TIME YIELD ESTIMATION FOR SUGARCANE IN BRAZIL COMBINING REMOTE SENSING AND OFFICIAL STATISTICAL DATA
    Mello, Marcio Pupin
    Atzberger, Clement
    Formaggio, Antonio Roberto
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 5064 - 5067