Anomalous percolation flow transition of yield stress fluids in porous media

被引:10
|
作者
Waisbord, Nicolas [1 ]
Stoop, Norbert [2 ,3 ]
Walkama, Derek M. [1 ,4 ]
Dunkel, Jorn [2 ]
Guasto, Jeffrey S. [1 ]
机构
[1] Tufts Univ, Dept Mech Engn, 200 Coll Ave, Medford, MA 02155 USA
[2] MIT, Dept Math, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Swiss Fed Inst Technol, Inst Bldg Mat, Stefano Franscini Pl 3, CH-8093 Zurich, Switzerland
[4] Tufts Univ, Dept Phys & Astron, 574 Boston Ave, Medford, MA 02155 USA
来源
PHYSICAL REVIEW FLUIDS | 2019年 / 4卷 / 06期
基金
瑞士国家科学基金会;
关键词
DISPERSION; TRANSPORT; GROWTH; MUCUS; LAW;
D O I
10.1103/PhysRevFluids.4.063303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Yield stress fluid (YSF) flows through porous materials are fundamental to biological, industrial, and geophysical processes, from blood and mucus transport to enhanced oil recovery. Despite their widely recognized importance across scales, the emergent transport properties of YSFs in porous environments remain poorly understood due to the nonlinear interplay between complex fluid rheology and pore microstructure. Here, we combine microfluidic experiments and nonlinear network theory to uncover an anomalous, hierarchical yielding process in the fluidization transition of a generic YSF flowing through a random medium. Percolation of a single fluidized filament gives way to pathways that branch and merge to form a complex flow network within the saturated porous medium. The evolution of the fluidized network with the flowing fraction of YSF results in a highly nonlinear flow conductivity and reveals a novel dispersion mechanism, resulting from the rerouting of fluid streamlines. The identified flow percolation phenomenon has broad implications for YSF transport in natural and engineered systems, and provides a tractable archetype for a diverse class of breakdown phenomena.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The flow and displacement in porous media of fluids with yield stress
    Chen, M
    Rossen, W
    Yortsos, YC
    [J]. CHEMICAL ENGINEERING SCIENCE, 2005, 60 (15) : 4183 - 4202
  • [2] Modelling the Flow of Yield-Stress Fluids in Porous Media
    Taha Sochi
    [J]. Transport in Porous Media, 2010, 85 : 489 - 503
  • [3] Modelling the Flow of Yield-Stress Fluids in Porous Media
    Sochi, Taha
    [J]. TRANSPORT IN POROUS MEDIA, 2010, 85 (02) : 489 - 503
  • [4] Characterizing Porous Media with the Yield Stress Fluids Porosimetry Method
    Antonio Rodríguez de Castro
    Abdelaziz Omari
    Azita Ahmadi-Sénichault
    Sabine Savin
    Luis-Fernando Madariaga
    [J]. Transport in Porous Media, 2016, 114 : 213 - 233
  • [5] Characterizing Porous Media with the Yield Stress Fluids Porosimetry Method
    de Castro, Antonio Rodriguez
    Omari, Abdelaziz
    Ahmadi-Senichault, Azita
    Savin, Sabine
    Madariaga, Luis-Fernando
    [J]. TRANSPORT IN POROUS MEDIA, 2016, 114 (01) : 213 - 233
  • [6] Variational linear comparison homogenization estimates for the flow of yield stress fluids through porous media
    Castaneda, Pedro Ponte
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2023, 321
  • [7] The first open channel for yield-stress fluids in porous media
    Fraggedakis, Dimitrios
    Chaparian, Emad
    Tammisola, Outi
    [J]. JOURNAL OF FLUID MECHANICS, 2021, 911
  • [8] Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows
    Emad Chaparian
    Daulet Izbassarov
    Francesco De Vita
    Luca Brandt
    Outi Tammisola
    [J]. Meccanica, 2020, 55 : 331 - 342
  • [9] Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows
    Chaparian, Emad
    Izbassarov, Daulet
    De Vita, Francesco
    Brandt, Luca
    Tammisola, Outi
    [J]. MECCANICA, 2020, 55 (02) : 331 - 342
  • [10] Flow of Maxwell fluids in porous media
    DeHaro, ML
    DelRio, JA
    Whitaker, S
    [J]. TRANSPORT IN POROUS MEDIA, 1996, 25 (02) : 167 - 192