Model Predictive Control Implementation on Neural Networks Using Denoising Autoencoder

被引:0
|
作者
Ushida, Daiki [1 ]
Konaka, Eiji [1 ]
机构
[1] Meijo Univ, Sch Sci & Technol, Nagoya, Aichi, Japan
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Model Predictive Control (MPC) is an effective control method for nonlinear control systems including quantized control systems; however, the optimization process requires huge computation for such cases and is therefore hard to realize. In this study, a controller design method based on a machine learning technique, in particular a neural network with denoising autoencoder (DAE), is proposed. The simulation results show that the neural controller emulates the behaviors of MPC. The mean and standard deviation of the control result are improved by applying DAE, compared to simple neural network. The proposed method requires short computation time, shorter than 1[ms], therefore it can be applied to fast mechanical control systems with nonlinear characteristics where MPC requires 100[ms] or longer.
引用
收藏
页码:149 / 154
页数:6
相关论文
共 50 条
  • [1] Model Predictive Control Using Neural Networks
    Draeger, Andreas
    Engell, Sebastian
    Ranke, Horst
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2020, 40 (05): : 11 - 12
  • [2] Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks
    Chen, Dawei
    Shi, Shuo
    Gu, Xuemai
    Shim, Byonghyo
    [J]. IEEE ACCESS, 2022, 10 : 52551 - 52564
  • [3] MODEL-PREDICTIVE CONTROL USING NEURAL NETWORKS
    DRAEGER, A
    ENGELL, S
    RANKE, H
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 1995, 15 (05): : 61 - 66
  • [4] Robust model predictive control using neural networks
    Patan, Krzysztof
    Witczak, Piotr
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2014, : 1107 - 1112
  • [5] Nonlinear model predictive control using neural networks
    Piché, S
    Sayyar-Rodsari, B
    Johnson, D
    Gerules, M
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2000, 20 (03): : 53 - 62
  • [6] Neural Networks for Model Predictive Control
    Georgieva, P.
    Feyo de Azevedo, S.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 111 - 118
  • [7] Predictive Control Using Neural Networks
    Kara, Kamel
    Hadjili, Mohamed Laid
    Hemsas, Kamel Eddine
    Missoum, Tedjeddine
    [J]. IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1589 - +
  • [8] Ovarian tumor diagnosis using deep convolutional neural networks and denoising convolutional autoencoder
    Choi, Youn Jin
    Jung, Yuyeon
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [9] Nonlinear model identification and adaptive model predictive control using neural networks
    Akpan, Vincent A.
    Hassapis, George D.
    [J]. ISA TRANSACTIONS, 2011, 50 (02) : 177 - 194
  • [10] Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
    Jung, Yuyeon
    Kim, Taewan
    Han, Mi-Ryung
    Kim, Sejin
    Kim, Geunyoung
    Lee, Seungchul
    Choi, Youn Jin
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)