Monthly ENSO Forecast Skill and Lagged Ensemble Size

被引:6
|
作者
Trenary, L. [1 ,2 ]
DelSole, T. [1 ,2 ]
Tippett, M. K. [3 ,4 ]
Pegion, K. [1 ,2 ]
机构
[1] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA
[2] Ctr Ocean Land Atmosphere Studies, Fairfax, VA 22030 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[4] King Abdulaziz Univ, Dept Meteorol, Jeddah, Saudi Arabia
基金
美国国家科学基金会; 美国国家航空航天局; 美国海洋和大气管理局;
关键词
ENSO forecast skill CFSv2; ensemble configuration; seasonal prediction; MODEL;
D O I
10.1002/2017MS001204
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Nino 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.
引用
收藏
页码:1074 / 1086
页数:13
相关论文
共 50 条
  • [1] A simulation of variability of ENSO forecast skill
    Davey, MK
    Anderson, DLT
    Lawrence, S
    [J]. JOURNAL OF CLIMATE, 1996, 9 (01) : 240 - 247
  • [2] Seasonal Forecast Skill of ENSO Teleconnection Maps
    Lenssen, Nathan J. L.
    Goddard, Lisa
    Mason, Simon
    [J]. WEATHER AND FORECASTING, 2020, 35 (06) : 2387 - 2406
  • [3] Skill assessment for ENSO using ensemble prediction
    Moore, AM
    Kleeman, R
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1998, 124 (546) : 557 - 584
  • [4] Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble
    Clark, Adam J.
    Kain, John S.
    Stensrud, David J.
    Xue, Ming
    Kong, Fanyou
    Coniglio, Michael C.
    Thomas, Kevin W.
    Wang, Yunheng
    Brewster, Keith
    Gao, Jidong
    Wang, Xuguang
    Weiss, Steven J.
    Du, Jun
    [J]. MONTHLY WEATHER REVIEW, 2011, 139 (05) : 1410 - 1418
  • [5] Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule
    Jin, Yishuai
    Rong, Xinyao
    Liu, Zhengyu
    [J]. CLIMATE DYNAMICS, 2018, 51 (7-8) : 2725 - 2742
  • [6] Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule
    Yishuai Jin
    Xinyao Rong
    Zhengyu Liu
    [J]. Climate Dynamics, 2018, 51 : 2725 - 2742
  • [7] An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast
    Larson, Sarah M.
    Kirtman, Ben P.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (21) : 9411 - 9415
  • [8] On the forecast skill of a convection-permitting ensemble
    Schellander-Gorgas, Theresa
    Wang, Yong
    Meier, Florian
    Weidle, Florian
    Wittmann, Christoph
    Kann, Alexander
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (01) : 35 - 56
  • [9] The fractions skill score for ensemble forecast verification
    Necker, Tobias
    Wolfgruber, Ludwig
    Kugler, Lukas
    Weissmann, Martin
    Dorninger, Manfred
    Serafin, Stefano
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, : 4457 - 4477
  • [10] A transformed lagged ensemble forecasting technique for increasing ensemble size
    Lawrence, Andrew R.
    Hansen, James A.
    [J]. MONTHLY WEATHER REVIEW, 2007, 135 (04) : 1424 - 1438