Palladium-Cobalt Bimetallic Nanoparticles Supported on Nitrogen-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction

被引:2
|
作者
Zhang, Cai [1 ]
Zhang, Qiang [1 ]
Liu, Tao [1 ]
Wang, Shengyang [1 ]
Song, Ming [1 ]
机构
[1] Xuzhou Univ Technol, Sch Mat & Chem Engn, Xuzhou 221018, Jiangsu, Peoples R China
关键词
Oxygen reduction reaction; palladium-cobalt nanoparticles; graphene; electrocatalysis; TRANSITION-METAL; CARBON; CATALYSTS; PLATINUM; ARRAYS;
D O I
10.1007/s11664-022-09701-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sluggish kinetics of oxygen reduction reaction (ORR) and the high cost of traditional Pt-based catalyst prompt us to develop highly efficient alternatives with low cost. In this paper, nitrogen-doped graphene (NG)-supported palladium (Pd) and cobalt (Co) catalysts were prepared by the improved Hummers methods assisted with metal ion adsorption and thermal reduction processes, and subsequently were used as electrocatalysts for ORR in alkaline solution. The X-ray diffraction analysis illustrated that the (111), (200), and (220) crystal planes of PdCo/NG shifted in the high-angle direction relative to Pd/NG, mainly due to the simultaneous loading of Pd and Co on NG. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) measurements further confirmed that metallic Pd and Co nanoparticles were simultaneously loaded on NG and uniformly distributed. The Pd and Co nanoparticles were 3-30 nm and 2-15 nm in size, respectively. In particular, unlike the Co nanoparticles encapsulated by several carbon layers in Co/NG, no carbon layers were detected outside of Co nanoparticles in PdCo/NG. This is probably due to the existence of Pd that prevents the carbon agglomeration around Co. Electrochemical measurements suggested that all catalysts manifested catalytic activity for ORR, and ORR catalyzed by them obeys the first-order reaction kinetics with respect to the concentration of O-2 in the solution. The PdCo/NG has the most positive peak potential (-0.198 V versus Ag/AgCl) of oxygen reduction in the cyclic voltammetry (CV) curves and most positive onset potential (-0.056 V versus Ag/AgCl) in the linear sweep voltammetry (LSV) curves, illuminating its excellent ORR activity relative to the catalysts loaded with Pd or Co alone. The ORR catalyzed by metal-free NG mainly goes through a 2e(-) pathway, while a mixed 2e(-) and 4e(-) pathway dominated the ORR catalyzed by Pd/NG, Co/NG, and PdCo/NG. Compared with Pd/NG- and Co/NG-catalyzed ORR, the electron transfer number stabilized at 3.2 without fluctuation with the potential negative shift, and the KouteckATIN SMALL LETTER Y WITH ACUTE-Levich (K-L) plots have better linearity and parallelism for PdCo/NG. These indicated that ORR steps are more concise and stable on PdCo/NG than on other samples. Such conspicuous features of PdCo/NG are probably ascribed to the simultaneous loading of Pd and Co nanoparticles. In particular, replacing partial Pd with Co not only reduces the cost, but also improves the activity of the electrocatalysts. This work developed a bimetallic-supported catalyst with low cost and highlighted the feasibility of replacing partial Pd with Co supported on carbons as ORR electrocatalyst, laying the foundation for large-scale application of non-Pt catalysts.
引用
收藏
页码:4580 / 4588
页数:9
相关论文
共 50 条
  • [1] Palladium–Cobalt Bimetallic Nanoparticles Supported on Nitrogen-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction
    Cai Zhang
    Qiang Zhang
    Tao Liu
    Shengyang Wang
    Ming Song
    Journal of Electronic Materials, 2022, 51 : 4580 - 4588
  • [2] Electrochemically Reduced Graphene Oxide Supported Palladium-Cobalt Alloy Nanoparticles as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction
    Yasmin, Sabina
    Kabir, Md Humayun
    Shaikh, Md Aftab Ali
    Jeon, Seungwon
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2023, 12 (11)
  • [3] Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst
    Ila Jogesh Ramala Sarkar
    Shaik Gouse Peera
    Raghuram Chetty
    Journal of Applied Electrochemistry, 2018, 48 : 849 - 865
  • [4] Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst
    Chetty, Raghuram (raghuc@iitm.ac.in), 1600, Springer Science and Business Media B.V. (48):
  • [5] Manganese oxide nanoparticles supported nitrogen-doped graphene: a durable alkaline oxygen reduction electrocatalyst
    Sarkar, Ila Jogesh Ramala
    Peera, Shaik Gouse
    Chetty, Raghuram
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2018, 48 (08) : 849 - 865
  • [6] Facile preparation of nitrogen-doped graphene as an efficient oxygen reduction electrocatalyst
    Gao, Xiaochun
    Wang, Liwei
    Ma, Jizhen
    Wang, Yueqing
    Zhang, Jintao
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (09): : 1582 - 1590
  • [7] Nitrogen-Doped Graphene Supported Cobalt Oxide Nanocomposite as High Performance Electrocatalyst for Oxygen Reduction Reaction
    Yasmin, Sabina
    Ahmed, Mohammad Shamsuddin
    Jeon, Seungwon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (06) : 3959 - 3966
  • [8] Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets
    Jukk, Kristel
    Kongi, Nadezda
    Matisen, Leonard
    Kallio, Tanja
    Kontturi, Kyosti
    Tammeveski, Kaido
    ELECTROCHIMICA ACTA, 2014, 137 : 206 - 212
  • [9] Nitrogen-doped Graphene Loaded with Cobalt Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Hong
    Li, Yanping
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (04):
  • [10] Cobalt-nickel bimetallic hybridized nitrogen-doped hierarchical porous carbon as efficient oxygen reduction electrocatalyst
    Huang, Jie-Ping
    Pan, Qiu-Ren
    Jiang, Hui-Huan
    Zhou, Xiao-Feng
    Li, Nan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (17)