High-fidelity entangling gate for double-quantum-dot spin qubits

被引:179
|
作者
Nichol, John M. [1 ]
Orona, Lucas A. [1 ]
Harvey, Shannon P. [1 ]
Fallahi, Saeed [2 ,3 ]
Gardner, Geoffrey C. [3 ,4 ]
Manfra, Michael J. [2 ,3 ,4 ,5 ]
Yacoby, Amir [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[5] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
来源
NPJ QUANTUM INFORMATION | 2017年 / 3卷
基金
美国国家科学基金会;
关键词
SINGLE-ELECTRON SPIN; ENTANGLEMENT; COMPUTATION; RESONANCE;
D O I
10.1038/s41534-016-0003-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electron spins in semiconductors are promising qubits because their long coherence times enable nearly 109 coherent quantum gate operations. However, developing a scalable high-fidelity two-qubit gate remains challenging. Here, we demonstrate an entangling gate between two double-quantum-dot spin qubits in GaAs by using a magnetic field gradient between the two dots in each qubit to suppress decoherence due to charge noise. When the magnetic gradient dominates the voltage-controlled exchange interaction between electrons, qubit coherence times increase by an order of magnitude. Using randomized benchmarking, we measure single-qubit gate fidelities of similar to 99%, and through self-consistent quantum measurement, state, and process tomography, we measure an entangling gate fidelity of 90%. In the future, operating double quantum dot spin qubits with large gradients in nuclear-spin-free materials, such as Si, should enable a two-qubit gate fidelity surpassing the threshold for fault-tolerant quantum information processing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] High-fidelity entangling gate for double-quantum-dot spin qubits
    John M. Nichol
    Lucas A. Orona
    Shannon P. Harvey
    Saeed Fallahi
    Geoffrey C. Gardner
    Michael J. Manfra
    Amir Yacoby
    [J]. npj Quantum Information, 3
  • [2] Fast high-fidelity entangling gates for spin qubits in Si double quantum dots
    Calderon-Vargas, F. A.
    Barron, George S.
    Deng, Xiu-Hao
    Sigillito, A. J.
    Barnes, Edwin
    Economou, Sophia E.
    [J]. PHYSICAL REVIEW B, 2019, 100 (03)
  • [3] High-fidelity gates in quantum dot spin qubits
    Koh, Teck Seng
    Coppersmith, S. N.
    Friesen, Mark
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19695 - 19700
  • [4] High-fidelity entangling gates for quantum-dot hybrid qubits based on exchange interactions
    Yang, Yuan-Chi
    Coppersmith, S. N.
    Friesen, Mark
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [5] Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot
    Wang, Ning
    Wang, Shao-Min
    Zhang, Run-Ze
    Kang, Jia-Min
    Lu, Wen-Long
    Li, Hai-Ou
    Cao, Gang
    Wang, Bao-Chuan
    Guo, Guo-Ping
    [J]. Applied Physics Letters, 2024, 125 (20)
  • [6] Fast and High-Fidelity State Preparation and Measurement in Triple-Quantum-Dot Spin Qubits
    Blumoff, Jacob Z.
    Pan, Andrew S.
    Keating, Tyler E.
    Andrews, Reed W.
    Barnes, David W.
    Brecht, Teresa L.
    Croke, Edward T.
    Euliss, Larken E.
    Fast, Jacob A.
    Jackson, Clayton A. C.
    Jones, Aaron M.
    Kerckhoff, Joseph
    Lanza, Robert K.
    Raach, Kate
    Thomas, Bryan J.
    Velunta, Roland
    Weinstein, Aaron J.
    Ladd, Thaddeus D.
    Eng, Kevin
    Borselli, Matthew G.
    Hunter, Andrew T.
    Rakher, Matthew T.
    [J]. PRX QUANTUM, 2022, 3 (01):
  • [7] High-fidelity geometric gate for silicon-based spin qubits
    Zhang, Chengxian
    Chen, Tao
    Li, Sai
    Wang, Xin
    Xue, Zheng-Yuan
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] High-Fidelity CNOT Gate for Donor Electron Spin Qubits in Silicon
    Kranz, Ludwik
    Roche, Stephen
    Gorman, Samuel K.
    Keizer, Joris. G.
    Simmons, Michelle Y.
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (02)
  • [9] Geometric Control for Unified Entangling Quantum Gate with High-Fidelity in Electric Circuit
    Lin Xu
    Gang Huang
    Y. H. Ji
    Z. S. Wang
    [J]. International Journal of Theoretical Physics, 2010, 49 : 2002 - 2015
  • [10] Geometric Control for Unified Entangling Quantum Gate with High-Fidelity in Electric Circuit
    Xu, Lin
    Huang, Gang
    Ji, Y. H.
    Wang, Z. S.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (09) : 2002 - 2015