Combined global climate model and mesoscale model simulations of Antarctic climate

被引:21
|
作者
Hines, KM [1 ]
Bromwich, DH [1 ]
Liu, Z [1 ]
机构
[1] OHIO STATE UNIV, ATMOSPHER SCI PROGRAM, COLUMBUS, OH 43210 USA
关键词
D O I
10.1029/97JD00792
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Simulations of high southern latitudes with the high-resolution, limited-area Penn State/NCAR mesoscale model, version 4 (MM4), examine the impact of a moist physics parameterization and the success of a one-way nesting inside the global NCAR community climate model, version 2 (CCM2). Discretization is by 100 km resolution in the horizontal and 15 or 16 levels in the vertical. Initial and boundary conditions for the simulations are provided by analyses of the European Centre for Medium-Range Weather Forecasts or CCM2 simulations. Comparisons of dry and moist simulations of an austral winter month, June 1988, are used to examine the role of clouds in the regional meteorology A cloud-free MM4 simulation with boundary conditions provided by CCM2 run 422 indicates that the one-way nesting of the mesoscale model can produce significant differences in the model output, including an improvement in the location of one longwave trough, reduced cold bias, and a more detailed surface wind field. The improved location of the longwave trough over the Atlantic Ocean is hypothesized to result from blocking induced by the reduced cold bias. The nested simulation is sensitive to the forcing at the horizontal boundaries. Consequently, proper location of troughs and ridges at the boundaries is required for the model to well represent ail the major troughs and ridges inside the domain. The addition of moist physics to the mesoscale simulations tends to improve the quality of the simulated fields over the Southern Ocean. In particular, the intensity of the circumpolar trough is increased. Over Antarctica, serious deficiencies are found in the simulations with moist physics. Excessive moisture is apparently stored in the simulated clouds:leading to excessive atmospheric back radiation and, consequently, excessive temperatures at the surface and higher up in the troposphere.
引用
收藏
页码:13747 / 13760
页数:14
相关论文
共 50 条
  • [1] Simulations of Antarctic climate using a limited area model
    Walsh, K
    McGregor, JL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D14) : 19093 - 19108
  • [2] Formulation of an ocean model for global climate simulations
    Griffies, S. M.
    Gnanadesikan, A.
    Dixon, K. W.
    Dunne, J. P.
    Gerdes, R.
    Harrison, M. J.
    Rosati, A.
    Russell, J. L.
    Samuels, B. L.
    Spelman, M. J.
    Winton, M.
    Zhang, R.
    [J]. OCEAN SCIENCE, 2005, 1 (01) : 45 - 79
  • [3] SNOW COVER MODEL FOR GLOBAL CLIMATE SIMULATIONS
    LOTH, B
    GRAF, HF
    OBERHUBER, JM
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D6) : 10451 - 10464
  • [4] Chemistry-climate model simulations of spring Antarctic ozone
    Austin, John
    Struthers, H.
    Scinocca, J.
    Plummer, D. A.
    Akiyoshi, H.
    Baumgaertner, A. J. G.
    Bekki, S.
    Bodeker, G. E.
    Braesicke, P.
    Bruehl, C.
    Butchart, N.
    Chipperfield, M. P.
    Cugnet, D.
    Dameris, M.
    Dhomse, S.
    Frith, S.
    Garny, H.
    Gettelman, A.
    Hardiman, S. C.
    Joeckel, P.
    Kinnison, D.
    Kubin, A.
    Lamarque, J. F.
    Langematz, U.
    Mancini, E.
    Marchand, M.
    Michou, M.
    Morgenstern, O.
    Nakamura, T.
    Nielsen, J. E.
    Pitari, G.
    Pyle, J.
    Rozanov, E.
    Shepherd, T. G.
    Shibata, K.
    Smale, D.
    Teyssedre, H.
    Yamashita, Y.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [5] Global climate model and coupled regional climate model simulations over the eastern United States: GENESIS and RegCM2 simulations
    Jenkins, GS
    Barron, EJ
    [J]. GLOBAL AND PLANETARY CHANGE, 1997, 15 (1-2) : 3 - 32
  • [6] COMPRESSION OF CLIMATE SIMULATIONS WITH A NONSTATIONARY GLOBAL SPATIOTEMPORAL SPDE MODEL
    Fuglstad, Geir-Arne
    Castruccio, Stefano
    [J]. ANNALS OF APPLIED STATISTICS, 2020, 14 (02): : 542 - 559
  • [7] An assessment of global climate model simulations of arctic air temperatures
    Tao, X
    Walsh, JE
    Chapman, WL
    [J]. JOURNAL OF CLIMATE, 1996, 9 (05) : 1060 - 1076
  • [8] THE ANTARCTIC CLIMATE OF THE UKMO UNIFIED MODEL
    CONNOLLEY, WM
    CATTLE, H
    [J]. ANTARCTIC SCIENCE, 1994, 6 (01) : 115 - 122
  • [9] The effects of Antarctic iceberg calving- size distribution in a global climate model
    Stern, A. A.
    Adcroft, A.
    Sergienko, O.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (08) : 5773 - 5788
  • [10] Temperature and precipitation projections for the Antarctic Peninsula over the next two decades: contrasting global and regional climate model simulations
    Bozkurt, Deniz
    Bromwich, David H.
    Carrasco, Jorge
    Rondanelli, Roberto
    [J]. CLIMATE DYNAMICS, 2021, 56 (11-12) : 3853 - 3874