Mapping percentage tree cover from Envisat MERIS data using linear and nonlinear techniques

被引:26
|
作者
Berberoglu, S. [1 ]
Satir, O. [2 ]
Atkinson, P. M. [3 ]
机构
[1] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey
[2] Univ Yuzuncu, Dept Landscape Architecture, TR-65080 Yil Van, Turkey
[3] Univ Southampton, Sch Geog, Southampton SO17 1BJ, Hants, England
关键词
NEURAL-NETWORKS; CLASSIFICATION; AVHRR;
D O I
10.1080/01431160802660554
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The aim of this study was to predict percentage tree cover from Envisat Medium Resolution Imaging Spectrometer (MERIS) imagery with a spatial resolution of 300 m by comparing four common models: a multiple linear regression ( MLR) model, a linear mixture model (LMM), an artificial neural network ( ANN) model and a regression tree (RT) model. The training data set was derived from a fine spatial resolution land cover classification of IKONOS imagery. Specifically, this classification was aggregated to predict percentage tree cover at the MERIS spatial resolution. The predictor variables included the MERIS wavebands plus biophysical variables (the normalized difference vegetation index (NDVI), leaf area index (LAI), fraction of photosynthetically active radiation (fPAR), fraction of green vegetation covering a unit area of horizontal soil (fCover) and MERIS terrestrial chlorophyll index (MTCI)) estimated from the MERIS data. An RT algorithm was the most accurate model to predict percentage tree cover based on the Envisat MERIS bands and vegetation biophysical variables. This study showed that Envisat MERIS data can be used to predict percentage tree cover with considerable spatial detail. Inclusion of the biophysical variables led to greater accuracy in predicting percentage tree cover. This finer-scale depiction should be useful for environmental monitoring purposes at the regional scale.
引用
收藏
页码:4747 / 4766
页数:20
相关论文
共 50 条
  • [1] Using MERIS on Envisat for land cover mapping in the Netherlands
    Clevers, J. G. P. W.
    Schaepman, M. E.
    Mucher, C. A.
    De Wit, A. J. W.
    Zurita-Milla, R.
    Bartholomeus, H. M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (3-4) : 637 - 652
  • [2] LAND COVER CLASSIFICATION IN UKRAINIAN CARPATHIANS USING THE MERIS TERRESTRIAL CHLOROPHYL INDEX AND RED EDGE POSITION FROM ENVISAT MERIS DATA
    Lyalko, V. L.
    Shportyuk, Z. M.
    Sakhatskyi, O. L.
    Sybirtseva, O. M.
    [J]. SPACE SCIENCE AND TECHNOLOGY-KOSMICNA NAUKA I TEHNOLOGIA, 2006, 12 (5-6): : 10 - 14
  • [3] Modeling forest productivity using envisat MERIS data
    Berberoglu, Suha
    Evrendilek, Fatih
    Ozkan, Coskun
    Donmez, Cenk
    [J]. SENSORS, 2007, 7 (10) : 2115 - 2127
  • [4] Global burned area mapping from ENVISAT-MERIS and MODIS active fire data
    Alonso-Canas, Itziar
    Chuvieco, Emilio
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 163 : 140 - 152
  • [5] A new global tree-cover percentage map using MODIS data
    Kobayashi, Toshiyuki
    Tsend-Ayush, Javzandulam
    Tateishi, Ryutaro
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (04) : 969 - 992
  • [6] Urban aerosol mapping over Athens using the differential textural analysis (DTA) algorithm on MERIS-ENVISAT data
    Retalis, Adrianos
    Sifakis, Nicolaos
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) : 17 - 25
  • [7] MONITORING ENVIRONMENTAL CONDITIONS IN MUUGA HARBOR USING ENVISAT MERIS AND ASAR DATA
    Sipelgas, Liis
    Uiboupin, Rivo
    Raudsepp, Urmas
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 409 - 412
  • [8] ENVISAT-1/ASAR polarimetric and interferometric data for land cover mapping
    Mróz, M
    Perski, Z
    [J]. REMOTE SENSING IN TRANSITION, 2004, : 19 - 24
  • [9] Applicability of the Mix-Unmix Classifier in percentage tree and soil cover mapping
    Ngigi, T.
    Tateishi, R.
    Al-Bilbisi, H.
    Gachari, M.
    Waithaka, E.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (14) : 3637 - 3648
  • [10] Applicability of the Mix-Unmix Classifier in percentage tree and soil cover mapping
    Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200, Nairobi, Kenya
    不详
    不详
    [J]. Int. J. Remote Sens., 14 (3637-3648):