THRESHOLD DYNAMICS IN A TIME-DELAYED PERIODIC SIS EPIDEMIC MODEL

被引:38
|
作者
Lou, Yijun [1 ]
Zhao, Xiao-Qiang [1 ]
机构
[1] Mem Univ Newfoundland, Dept Math, St John, NF A1C 5S7, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Periodic epidemic model; Maturation delay; Basic reproduction ratio; Periodic solutions; Uniform persistence; MONOTONE;
D O I
10.3934/dcdsb.2009.12.169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global dynamics of a periodic SIS epidemic model with maturation delay is investigated. We first obtain sufficient conditions for the single population growth equation to admit a globally attractive positive periodic solution. Then we introduce the basic reproduction ratio R-0 for the epidemic model, and show that the disease dies out when R-0 < 1, and the disease remains endemic when R-0 > 1. Numerical simulations are also provided to confirm our analytic results.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 50 条