Chip-scale integration of data-gathering microsystems

被引:24
|
作者
Lemmerhirt, David F. [1 ]
Wise, Kensall D. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Engn Res Ctr Wireless Integrated Microsyst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
microelectromechanical systems (MEMS); microsystems; multichip integration; power management; system integration; system partitioning; through-wafer interconnects;
D O I
10.1109/JPROC.2006.873619
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Integrated microsystems merging embedded computing with sensing and actuation are poised to dramatically expand our ability to gather information from the nonelectronic world. Examples include a microassembled multichip electronic interface to the brain, an integrated electrofluidic gas chromatography system for environmental monitoring, and a wireless intra-arterial microsystem for pressure and flow measurements. In general, such microsystems will consist of a few chips, integrated in generic platforms that are customized for a given-application by the sensors selected and by software. This paper illustrates this approach with a 0.15-cm(3) multisensor microsystem for autonomously sensing and storing environmental and biological data. The microsystem is formed using on-board pressure/temperature/humidity sensors, off-board strain gauges and neural/EMG electrodes, a custom sensor-interface chip, a mixed-signal microcontroller, and a nonvolatile memory. These components allow the acquisition and storage of multidomain data at low power levels (<50 mu W reading capacitive sensors at 1 Hz). The system is programmable in gain (0.4-3.2 mV/fF), offset (lob), accuracy (14b), and sampling rate (0.1 Hz-10 kHz) and is integrated in a micromachined silicon platform that implements through-wafer interconnects, solder-based microconnectors, and recessed cavities for chip-stacking. The microsystem is realized in 9.5 mm x 7.6 mm x 2.0 mm (0.15 cm(3))(<0.5 cm(3) with a lithium battery).
引用
收藏
页码:1138 / 1159
页数:22
相关论文
共 50 条
  • [1] Chip-scale GaN integration
    Li, K. H.
    Fu, W. Y.
    Choi, H. W.
    PROGRESS IN QUANTUM ELECTRONICS, 2020, 70
  • [2] Heterogeneous 2D and 3D Photonic Integration for Future Chip-Scale Microsystems
    Ben Yoo, S. J.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [3] Devices and architectures for photonic chip-scale integration
    Ahn, J.
    Fiorentino, M.
    Beausoleil, R. G.
    Binkert, N.
    Davis, A.
    Fattal, D.
    Jouppi, N. P.
    McLaren, M.
    Santori, C. M.
    Schreiber, R. S.
    Spillane, S. M.
    Vantrease, D.
    Xu, Q.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 95 (04): : 989 - 997
  • [4] Devices and architectures for photonic chip-scale integration
    J. Ahn
    M. Fiorentino
    R. G. Beausoleil
    N. Binkert
    A. Davis
    D. Fattal
    N. P. Jouppi
    M. McLaren
    C. M. Santori
    R. S. Schreiber
    S. M. Spillane
    D. Vantrease
    Q. Xu
    Applied Physics A, 2009, 95 : 989 - 997
  • [5] VERSATILE DATA-GATHERING TOOL
    GRANDLE, JA
    PLUM, RR
    BELL LABORATORIES RECORD, 1979, 57 (08): : 227 - 231
  • [6] Suspected data-gathering exercise
    不详
    VETERINARY RECORD, 2012, 170 (17)
  • [7] ABUSE OF DATA-GATHERING PROCESS
    ACHORD, JL
    SOUTHERN MEDICAL JOURNAL, 1977, 70 (11) : 1262 - 1264
  • [8] Nanoscale Light Emitters and Their Dynamics for Chip-scale Integration
    Fainman, Y.
    Pan, S. H.
    Gu, Q.
    El Amili, A.
    Vallini, F.
    2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2017, : 109 - 110
  • [9] Magnetic shield integration for a chip-scale atomic clock
    Hong, Hyun-Gue
    Park, Jongcheol
    Kim, Tae Hyun
    Kim, Hee Yeoun
    Park, Sang Eon
    Lee, Sang-Bum
    Heo, Myoung-Sun
    Kwon, Taeg Yong
    APPLIED PHYSICS EXPRESS, 2020, 13 (10)
  • [10] Subwavelength semiconductor lasers for dense chip-scale integration
    Gu, Qing
    Smalley, Joseph S. T.
    Nezhad, Maziar P.
    Simic, Aleksandar
    Lee, Jin Hyoung
    Katz, Michael
    Bondarenko, Olesya
    Slutsky, Boris
    Mizrahi, Amit
    Lomakin, Vitaliy
    Fainman, Yeshaiahu
    ADVANCES IN OPTICS AND PHOTONICS, 2014, 6 (01): : 1 - 56